19.設(shè)函數(shù)f(x)=xln(x-1)-a(x-2).
(Ⅰ)若a=2017,求曲線f(x)在x=2處的切線方程;
(Ⅱ)若當(dāng)x≥2時,f(x)≥0,求a的取值范圍.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),計算f(2),f′(2),求出切線方程即可;
(Ⅱ)設(shè)函數(shù)g(x)=ln(x-1)-$\frac{a(x-2)}{x}$,(x≥2),于是問題轉(zhuǎn)化為g(x)≥0對任意的x≥2恒成立,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:(Ⅰ)a=2017時,f(x)=xln(x-1)-2017(x-2),
則f′(x)=ln(x-1)+$\frac{x}{x-1}$-2017,故f′(2)=-2015,
又f(2)=0,
故切線方程是:y-0=-2015(x-2),
即2015x+y-4030=0;
(Ⅱ)由f(x)≥0得xln(x-1)-a(x-2)≥0,而x≥2,
故ln(x-1)-$\frac{a(x-2)}{x}$≥0,
設(shè)函數(shù)g(x)=ln(x-1)-$\frac{a(x-2)}{x}$,(x≥2),
于是問題轉(zhuǎn)化為g(x)≥0對任意的x≥2恒成立,
注意到g(2)=0,故若g′(x)≥0,則g(x)遞增,
從而g(x)≥g(2)=0,而g′(x)=$\frac{{x}^{2}-2a(x-1)}{(x-1{)x}^{2}}$,
∴g′(x)≥0等價于x2-2a(x-1)≥0,
分離參數(shù)得a≤$\frac{{x}^{2}}{2(x-1)}$=$\frac{1}{2}$[(x-1)+$\frac{1}{x-1}$+2],
由均值不等式得$\frac{1}{2}$[(x-1)+$\frac{1}{x-1}$+2]≥2,
當(dāng)且僅當(dāng)x=2時取“=”成立,于是a≤2,
當(dāng)a>2時,設(shè)h(x)=x2-2a(x-1),
∵h(2)=4-2a=2(2-a)>0,
又拋物線h(x)=x2-2a(x-1)開口向上,
故h(x)=x2-2a(x-1)有2個零點,
設(shè)兩個零點為x1,x2,則x1<2<x2
于是x∈(2,x2)時,h(x)<0,故g′(x)<0,g(x)遞減,
故g(x)<g(2)=0,與題設(shè)矛盾,不合題意,
綜上,a的范圍是(-∞,2].

點評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在空間四邊形ABCD中,H,G分別是AD,CD的中點,E,F(xiàn)分別邊AB,BC上的點,且$\frac{CF}{FB}$=$\frac{AE}{EB}$=$\frac{1}{3}$.求證:
①點E,F(xiàn),G,H四點共面;
②直線EH,BD,F(xiàn)G相交于一點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知在△ABC中,(2$\overrightarrow{BA}$-3$\overrightarrow{BC}$)•$\overrightarrow{CB}$=0,則角A的最大值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a=($\frac{1}{2}$)10,b=($\frac{1}{5}$)${\;}^{-\frac{1}{2}}$,c=log${\;}_{\frac{1}{3}}$10,則a,b.c大小關(guān)系為(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在區(qū)間[0,1]上隨機地取兩個數(shù)x、y,則事件“y≤x5”發(fā)生的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某手機廠商推出一款6寸大屏手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調(diào)查,對手機進行打分,打分的頻數(shù)分布表如下:

女性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)2040805010
男性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)4575906030
(Ⅰ)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的波動大。ú挥嬎憔唧w值,給出結(jié)論即可);
(Ⅱ)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.對于兩條不同的直線m,n和兩個不同的平面α,β,以下結(jié)論正確的是( 。
A.若m?α,n∥β,m,n是異面直線,則α,β相交
B.若m⊥α,m⊥β,n∥α,則n∥β
C.若m?α,n∥α,m,n共面于β,則m∥n
D.若m⊥α,n⊥β,α,β不平行,則m,n為異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\left\{\begin{array}{l}lnx({x>0})\\-\sqrt{-x}({x≤0})\end{array}$與g(x)=|x+a|+1的圖象上存在關(guān)于y軸對稱的點,則實數(shù)a的取值范圍是( 。
A.RB.(-∞,-e]C.[e,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax-lnx,g(x)=ex+ax.
(1)若a<0.
(i)試探討函數(shù)f(x)的單調(diào)性;
(ii)若函數(shù)f(x)和g(x)在區(qū)間(0,ln3)上具有相同的單調(diào)性,求實數(shù)a的取值范圍;
(2)設(shè)函數(shù)h(x)=x2-f(x)有兩個極值點x1,x2,且x1∈(0,$\frac{1}{2}$),求證:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

同步練習(xí)冊答案