11.若f(x)=f′(1)x2+ex,則f(1)=( 。
A.eB.0C.e+1D.e-1

分析 由f(x)=f′(1)x2+ex,求導(dǎo)得:f′(x)=2f′(1)x+ex,令x=1,解得f′(1)=-e.f(x)=-ex2+ex,可得
f(1).

解答 解:由f(x)=f′(1)x2+ex,
求導(dǎo)得:f′(x)=2f′(1)x+ex,令x=1可得,f′(1)=2f′(1)+e,解得f′(1)=-e.
∴f(x)=-ex2+ex,∴f(1)=-e+e=0.
故選:B.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則、方程的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a為實(shí)數(shù),f(x)=(x2-4)(x-a)
(1)求導(dǎo)數(shù)f′(x);
(2)若x=-1是f(x)的極值點(diǎn),求f(x)在[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)滿足f(x)=ex-f'(0)x+1,則f(x)=ex-$\frac{1}{2}$x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)0<a<1,若函數(shù)f(x)=ax+b的圖象上每一點(diǎn)都不在第一象限,則實(shí)數(shù)b的最大值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知△ABC中.
(1)設(shè)$\overrightarrow{BC}$•$\overrightarrow{CA}$=$\overrightarrow{CA}$•$\overrightarrow{AB}$,求證:△ABC是等腰三角形;
(2)設(shè)向量$\overrightarrow{s}$=(2sinC,-$\sqrt{3}$),$\overrightarrow{t}$=(sin2C,2cos2$\frac{c}{2}$-1),且$\overrightarrow{s}$∥$\overrightarrow{t}$,若sinA=$\frac{1}{3}$,求sin($\frac{π}{3}$-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.定義域?yàn)镽的函數(shù)f(x)滿足f(x+1)=2f(x),且當(dāng)x∈[0,1]時(shí),f(x)=x2-x,則當(dāng)x∈[-2,-1]時(shí),f(x)的最小值為(  )
A.-$\frac{1}{16}$B.-$\frac{1}{8}$C.-$\frac{1}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求值:
(1)sin75°;
(2)sin195°;
(3)sin72°cos42°-cos72°sin42°;
(4)cos20°cos70°-sin20°sin70°;
(5)cos79°cos56°-cos11°cos34°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知向量$\overrightarrow a=({1-t,2t-1,3})$,$\overrightarrow b=({2,t,t})$,則$|{\overrightarrow a-\overrightarrow b}|$的最小值為(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,在四棱錐P-ABCD中,四邊形ABCD為矩形,△PAD為等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F(xiàn)分別為PC,BD的中點(diǎn).
(1)證明:EF∥平面PAD;
(2)證明:直線PA⊥平面PCD.

查看答案和解析>>

同步練習(xí)冊(cè)答案