14.若y=f(x)的圖象如圖所示,則f(x)=( 。
A.$\sqrt{{x}^{2}-2|x|+1}$B.x2+1-2|x|C.|x2-1|D.$\sqrt{{x}^{2}-2x+1}$

分析 根據(jù)函數(shù)解析式的特點(diǎn)結(jié)合函數(shù)圖象,利用特殊值法和排除法進(jìn)行判斷即可.

解答 解:當(dāng)x=-1時,f(-1)=0,此時$\sqrt{{x}^{2}-2x+1}$=$\sqrt{1+2+1}=\sqrt{4}$=2,不滿足條件.排除D.
當(dāng)x≥0時,x2+1-2|x|=x2+1-2x=(x-1)2,對應(yīng)的圖象為拋物線的一部分,不滿足條件.排除B.
當(dāng)-1≤x≤1時,|x2-1|=1-x2,對應(yīng)的圖象為拋物線的一部分,不滿足條件.排除C.
故選:A

點(diǎn)評 本題主要考查函數(shù)圖象判斷,利用特殊值法和排除法是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求值:
(1)sin220°+cos250°+sin20°cos50°;
(2)log2cos$\frac{π}{9}$+log2cos$\frac{2π}{9}$+log2cos$\frac{4π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)點(diǎn)O是面積為4的△ABC內(nèi)部一點(diǎn),且有$\overrightarrow{OA}$+$\overrightarrow{OB}$+2$\overrightarrow{OC}$=$\overrightarrow 0$,則△AOC的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知p:“|4-x|≤6”,q:“|x一1|≤a”(a∈R,a>0),若非p是非q的必要不充分條件,則實(shí)數(shù)a的取值范圍是[9,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下面給出從A到B的對應(yīng)f:
①A=R,B=R,f:x→$\frac{1}{x}$;②A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x+y,x-y)}③A={x|x是平面上的圓},B={x1x是平面上的正方形},f:畫圓的內(nèi)接正方形.④A={x|x是平面上的線段},B={x|x是平面上的點(diǎn)},f:取線段的中點(diǎn)}⑤A={x|0<x<1},B={x|0<x<2},f:x→3x.其中f是A到B的映射的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|:|$\overrightarrow$|:|$\overrightarrow{c}$|=2:k:3(k∈N*),且$\overrightarrow$-$\overrightarrow{a}$=2($\overrightarrow{c}$-$\overrightarrow$),若α為$\overrightarrow{a}$,$\overrightarrow{c}$的夾角,則cosα的值為-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=sin(2x+$\frac{π}{2}$)(x∈R),下面結(jié)論中錯誤的是( 。
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)是偶函數(shù)
C.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{2}$對稱
D.要得到函數(shù)f(x)的圖象,只需將函數(shù)y=sin2x的圖象向左平移$\frac{π}{2}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點(diǎn)M(1,1),圓(x+1)2+(y-2)2=4,直線l過點(diǎn)M(1,1),且與x軸,y軸的正半軸分別相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求過M點(diǎn)的圓的切線方程
(2)當(dāng)|MA|2+|MB|2取得最小值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$\overrightarrow a=({x,2})$,$\overrightarrow b=({2,4})$,且$\overrightarrow a$,$\overrightarrow b$的夾角為銳角,則x的取值范圍是(-4,1)∪(1,+∞).

查看答案和解析>>

同步練習(xí)冊答案