19.定義側(cè)面與底面垂直的棱柱為直棱柱,在直四棱柱ABCD-A1B1C1D1中(如圖),當(dāng)?shù)酌嫠倪呅蜛BCD滿足條件BD⊥AC時(shí),有BD1⊥A1C1
(注:填上你認(rèn)為正確的一種條件即可,不必考慮所有可能的情形)

分析 根據(jù)題意,由A1C⊥B1D1,結(jié)合直棱柱的性質(zhì),分析底面四邊形ABCD得到BD⊥AC,進(jìn)而驗(yàn)證即可得答案.

解答 解:∵四棱柱A1B1C1D1-ABCD是直棱柱,
∴B1D1⊥A1A,若A1C⊥B1D1,
則B1D1⊥平面A1AC1C,
∴B1D1⊥AC,
又由B1D1∥BD,
則有BD⊥AC,
反之,由BD⊥AC亦可得到A1C⊥B1D1
故答案為:BD⊥AC.

點(diǎn)評(píng) 本題主要通過開放的形式來考查線線,線面,面面垂直關(guān)系的轉(zhuǎn)化與應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.計(jì)算:lg2+lg5=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在下班高峰期,記者在某紅綠燈路口隨機(jī)訪問10個(gè)步行下班的路人,其年齡的莖葉圖如圖:
(1)求這些路人年齡的中位數(shù)與方差;
(2)若從40歲以上的路人中,隨機(jī)抽取2人,求其中一定含有50歲以上的路人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知m,n,l是直線,α,β是平面,下列命題中:
①若m?α,l?β,且α∥β,則m∥l;
②若l平行于α,則α內(nèi)可有無(wú)數(shù)條直線與l平行;
③若m?α,l?β,且l⊥m,則α⊥β;
④若m⊥n,n⊥l,則m∥l;
所有正確的命題序號(hào)為②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若直線l1:5x-12y+6=0,直線l2與l1垂直,則直線l2的斜率為$-\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),有$\frac{f(a)+f(b)}{a+b}$>0成立.
(Ⅰ)判斷f(x)在[-1,1]上的單調(diào)性,并證明;
(Ⅱ)解不等式:f(2x-1)<f(1-3x);
(Ⅲ)若f(x)≤m2-2am+1對(duì)所有的a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC,角A,B,C的對(duì)邊分別為a,b,c,若bcosA=3acosB,cosC=$\frac{\sqrt{5}}{5}$,則A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.頂點(diǎn)在原點(diǎn),準(zhǔn)線為x=4的拋物線的標(biāo)準(zhǔn)方程是y2=-16x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求證:$\frac{1-2co{s}^{2}α}{sinαcosα}$=tanα-cotα

查看答案和解析>>

同步練習(xí)冊(cè)答案