16.將函數(shù)y=sin(x+$\frac{π}{6}$)的圖象上各點(diǎn)的橫坐標(biāo)壓縮為原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),所得函數(shù)在下面哪個區(qū)間單調(diào)遞增(  )
A.(-$\frac{π}{3}$,$\frac{π}{6}$)?B.(-$\frac{π}{2}$,$\frac{π}{2}$)?C.(-$\frac{π}{3}$,$\frac{π}{3}$)??D.(-$\frac{π}{6}$,$\frac{2π}{3}$)?

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用正弦函數(shù)的增區(qū)間,求得y=g(x)的單調(diào)遞增區(qū)間.

解答 解:將函數(shù)y=sin(x+$\frac{π}{6}$)圖象上每一點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變),得到函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象;
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
可得函數(shù)g(x)的增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈z,
當(dāng)k=0時,可得函數(shù)在區(qū)間(-$\frac{π}{3}$,$\frac{π}{6}$)單調(diào)遞增.
故選:A.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的增區(qū)間,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,在棱長為3的正方體ABCD-A1B1C1D1中,點(diǎn)C1到平面A1BD的距離為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=log2(4-x2)的定義域?yàn)椋?2,2),值域?yàn)椋?∞,2],單調(diào)遞增區(qū)間為(-2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{\sqrt{x}+3,x≥0}\\{ax+b,x<0}\end{array}}\right.$滿足條件:y=f(x)是R上的單調(diào)函數(shù)且f(a)=-f(b)=4,則f(-1)的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}中,a2=102,an+1-an=4n,則數(shù)列$\left\{{\frac{a_n}{n}}\right\}$的最小項(xiàng)是( 。
A.第6項(xiàng)B.第7項(xiàng)C.第8項(xiàng)D.第9項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=DC=1,以D為圓心,DC為半徑,作弧和AD交于點(diǎn)E,點(diǎn)P為劣弧CE上的動點(diǎn),如圖所示.
(1)求|$\overrightarrow{DA}+\overrightarrow{DC}$|;
(2)求$\overrightarrow{PA}•\overrightarrow{PB}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.直線l過點(diǎn)M(2,1),且與橢圓$\frac{x^2}{8}+\frac{y^2}{4}=1$交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(Ⅰ)若點(diǎn)M是弦AB的中點(diǎn),求直線l的方程;
(Ⅱ)若直線l過橢圓的左焦點(diǎn),求數(shù)量積$\overrightarrow{OA}•\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.方程|x|+|y|=1表示的曲線是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.命題p:?x>0,總有x2-1≥0,則?p為(  )
A.?x0≤0,使得x2-1<0B.?x0>0,使得x2-1<0
C.?x>0,總有x2-1<0D.?x≤0,總有x2-1<0

查看答案和解析>>

同步練習(xí)冊答案