分析 an=$\frac{{2S}_{n}^{2}}{2{S}_{n}-1}$(n≥2),可得:(Sn-Sn-1)(2Sn-1)=2${S}_{n}^{2}$,化為$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,再利用等差數(shù)列的通項公式即可得出.
解答 解:∵an=$\frac{{2S}_{n}^{2}}{2{S}_{n}-1}$(n≥2),
∴(Sn-Sn-1)(2Sn-1)=2${S}_{n}^{2}$,
化為:-Sn-2SnSn-1+Sn-1=0,
∴$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,
∴數(shù)列$\{\frac{1}{{S}_{n}}\}$是等差數(shù)列,公差為2,首項為1.
∴$\frac{1}{{S}_{n}}$=1+2(n-1)=2n-1.
∴Sn=$\frac{1}{2n-1}$(n=1時也成立).
故答案為:$\frac{1}{2n-1}$.
點評 本題考查了遞推關(guān)系、等差數(shù)列遞通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com