20.已知sinα=$\frac{12}{13}$,cosβ=-$\frac{3}{5}$,α、β均為第二象限角,求cos(α-β),tan(α+β).

分析 利用同角三角函數(shù)的基本關(guān)系求得cosα和sinβ的值,兩角差的三角公式求得cos(α-β)的值;再求得tanα和tanβ的值,可得tan(α+β)的值.

解答 解:∵sinα=$\frac{12}{13}$,cosβ=-$\frac{3}{5}$,α、β均為第二象限角,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{5}{13}$,
sinβ=$\sqrt{{1-cos}^{2}β}$=$\frac{4}{5}$,
∴cos(α-β)=cosαcosβ+sinαsinβ=-$\frac{5}{13}$•(-$\frac{3}{5}$)+$\frac{12}{13}•\frac{4}{5}$=$\frac{63}{65}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{12}{5}$,tanβ=$\frac{sinβ}{cosβ}$=-$\frac{4}{3}$,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=-$\frac{56}{33}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的三角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.$\underset{lim}{(x,y)→(0,5)}$$\frac{sin({x}^{2}{y}^{2})}{{x}^{2}}$=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}、{bn}滿足an=$\frac{n}{2}$${•b}_{n}+{2}^{n-1}•_{n+1}$,bn=1-(-1)n,設(shè)數(shù)列{an}前n項和為Sn,則S2016的值為( 。
A.10082+2(21008-1)B.1007×1008+2(21008-1)
C.10082+$\frac{4}{3}$(41008-1)D.1007×1008+$\frac{4}{3}$(41008-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=-2cos(x-$\frac{π}{3}$)的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.從3名男同學(xué),n名女同學(xué)中任選2名參加英語口語比賽,其中至少有1名女同學(xué)的概率為$\frac{25}{28}$,則女生人數(shù)為5人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)y=f(x)的定義域為R,且y=f(x-1)的圖象關(guān)于x=1對稱,當(dāng)x≥0時,f(x)=$\left\{\begin{array}{l}{\frac{5}{4}tan\frac{πx}{4},0≤x≤1}\\{(\frac{1}{4})^{x}+1,x>1}\end{array}\right.$若關(guān)于x的方程5[f(x)]2-(5a+6)f(x)+6a=0(a∈R)有且僅有6個不同實數(shù)根,則實數(shù)a的取值范圍是a=$\frac{5}{4}$或0<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.不等式9x2+6x+1≥0的解集為( 。
A.{x|x$≠-\frac{1}{3}$}B.{-$\frac{1}{3}$}C.D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.己知函數(shù)f(x)=2x+1,數(shù)列{an}的前n項和Sn=f(n2)-1,數(shù)列{bn}滿足bn=f(bn-1),且b1=1.
(1)分別求{an},{bn}的通項公式;
(2)記cn=$\frac{{a}_{n}}{2{(b}_{n}+1)}$,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AD,BC上,且DE=EA,CF=2FB,如果對于常數(shù)λ,在正方形ABCD的四條邊上(不含頂點)有且只有6個不同的點P,使得$\overrightarrow{PE}•\overrightarrow{PF}=λ$成立,那么λ的取值范圍為( 。
A.$(-3,-\frac{1}{4})$B.(-3,3)C.$(-\frac{1}{4},3)$D.(3,12)

查看答案和解析>>

同步練習(xí)冊答案