3.已知數(shù)列{an}滿足a1=1,2${\;}^{{a}_{n+1}}$=3×2${\;}^{{a}_{n}}$+2(n∈N*),若an>4log23恒成立,則n的最小值為( 。
A.8B.7C.6D.5

分析 2${\;}^{{a}_{n+1}}$=3×2${\;}^{{a}_{n}}$+2(n∈N*),2${\;}^{{a}_{n+1}}$+1=3×(2${\;}^{{a}_{n}}$+1),${2}^{{a}_{1}}$+1=2.利用等比數(shù)列的通項(xiàng)公式可得2${\;}^{{a}_{n}}$.根據(jù)an>4log23恒成立,可得${2}^{{a}_{n}}$>34,代入即可得出.

解答 解:∵2${\;}^{{a}_{n+1}}$=3×2${\;}^{{a}_{n}}$+2(n∈N*),
∴2${\;}^{{a}_{n+1}}$+1=3×(2${\;}^{{a}_{n}}$+1),${2}^{{a}_{1}}$+1=2.
∴數(shù)列{2${\;}^{{a}_{n}}$+1}是等比數(shù)列,首項(xiàng)為2,公比為3.
∴2${\;}^{{a}_{n}}$+1=2×3n-1,即2${\;}^{{a}_{n}}$=2×3n-1-1.
∵an>4log23恒成立,
∴${2}^{{a}_{n}}$>34,∴2×3n-1-1>34
經(jīng)過驗(yàn)證:n≥5
∴n的最小值為5.
故選:D.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式、函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題:“對(duì)任意x∈R,ex-x2+ln(x2+2)>0”的否定是( 。
A.任意x∈R,ex-x2+ln(x2+2)≤0B.存在x∈R,ex-x2+ln(x2+2)>0
C.不存在ex-x2+ln(x2+2)≤0D.存在x∈R,ex-x2+ln(x2+2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=ex-1,g(x)=ln(x+1),直線l與y=f(x)的圖象相切,與y=g(x)的圖象也相切,則直線的l方程是y=x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$0<α<\frac{π}{2},\frac{π}{2}<β<π$,$cos(α+\frac{π}{4})=\frac{1}{3}$,$sin(\frac{β}{2}+\frac{π}{4})=\frac{{\sqrt{3}}}{3}$,則$cos(α-\frac{β}{2})$=( 。
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{9}$D.$-\frac{{\sqrt{6}}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$\overrightarrow a$=(x-$\sqrt{2}$,y),$\overrightarrow b$=(x+$\sqrt{2}$,y).動(dòng)點(diǎn)M(x,y)滿足$|{\overrightarrow a}|+|{\overrightarrow b}|$=2$\sqrt{3}$
(1)求點(diǎn)M的軌跡C的方程;
(2)直線l與C交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到l得距離為$\frac{{\sqrt{3}}}{2}$,求△ABO面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{3}$sin2ωx+2cos2ωx-1(其中0<ω<1),若點(diǎn)(-$\frac{π}{6}$,0)是函數(shù)f(x)圖象的一個(gè)對(duì)稱中心.
(1)試求ω的值;
(2)先列表,再作出函數(shù)f(x)在區(qū)間x∈[-π,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知三個(gè)數(shù)成等差數(shù)列,其和為126,另外三個(gè)數(shù)成等比數(shù)列,把這兩個(gè)數(shù)列的對(duì)應(yīng)項(xiàng)依次相加,分別得到85,76,84,求這兩個(gè)數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合M={1,m+2,m2+4},且5∈M,求m的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)求值:2cos215°
(2)化簡(jiǎn):$\frac{1}{2}cosx-\frac{{\sqrt{3}}}{2}sinx$.

查看答案和解析>>

同步練習(xí)冊(cè)答案