3.設(shè)函數(shù)f(x)=2x3-bx2+cx(x∈R),若函數(shù)g(x)=f(x)-f′(x)是奇函數(shù).
(1)求b,c的值;
(2)求f(2)+f′(2)的值;
(3)求曲線f(x)在點(diǎn)(1,f(1))處的切線方程.

分析 (1)求出函數(shù)f(x)的導(dǎo)數(shù),由g(x)為奇函數(shù),可得b=-6,c=0;
(2)求出f(x)的導(dǎo)數(shù),代入x=2,計(jì)算即可得到所求和;
(3)求得切線的斜率和切點(diǎn),由點(diǎn)斜式方程,即可得到所求切線的方程.

解答 解:(1)函數(shù)f(x)=2x3-bx2+cx的導(dǎo)數(shù)為f′(x)=6x2-2bx+c,
函數(shù)g(x)=f(x)-f′(x)=2x3-(b+6)x2+(c+2b)x-c,
由奇函數(shù)的定義,可得g(-x)=-g(x),
即有b+6=0,c=0,解得b=-6,c=0;
(2)f(x)=2x3+6x2的導(dǎo)數(shù)為f′(x)=6x2+12x,
即有f(2)+f′(2)=16+24+24+24=88;
(3)f(x)在點(diǎn)(1,f(1))處的切線斜率為6+12=18,
切點(diǎn)為(1,8),
則f(x)在點(diǎn)(1,f(1))處的切線方程為y-8=x-1,
即為x-y+7=0.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,同時(shí)考查奇函數(shù)的定義,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“?x∈R,x2-5x+1>0”的否定為( 。
A.?x∈R,x2-5x+1≤0B.?x∈R,x2-5x+1≤0C.?x∈R,x2-5x+1<0D.?x∈R,x2-5x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.一半徑為4m的水輪,如圖所示水輪圓心O距離水面2m,己知水輪每分鐘轉(zhuǎn)動4圈,如果當(dāng)水輪上P點(diǎn)從水中浮現(xiàn)時(shí)(圖中P0)點(diǎn)開始計(jì)算時(shí)間.
(1)求P點(diǎn)相對于水面的高度h(m)與時(shí)間t(s)之間的函數(shù)關(guān)系式:
(2)P點(diǎn)第一次達(dá)到最高點(diǎn)約要多長時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)f(x)=3x+3-x,則f(x)是( 。
A.偶函數(shù)B.奇函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足an+1=2n-3an,n∈N*
(1)設(shè)bn=$\frac{{a}_{n}}{{2}_{n}}$,求數(shù)列{bn}的通項(xiàng)公式(用a1和n表示);
(2)求使得數(shù)列{an}單調(diào)遞增的所有a1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,AB為半圓ACB的水平直徑,C為圓上的最低點(diǎn),一小球從A點(diǎn)以速度v0被水平拋出后恰好落在C點(diǎn),設(shè)重力加速度為g,不計(jì)空氣阻力,求圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,已知△AOB中,A(0,5),O(0,0),B(4,3),$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OB}$,AD與BC相交于點(diǎn)M,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在正項(xiàng)等比數(shù)列{an}中,若1og2(a1a2a3…a9)=18,且a2,a4是方程x2+mx+4=0的兩根,則數(shù)列{an}的通項(xiàng)公式為(  )
A.2${\;}^{-\frac{n-3}{2}}$B.2${\;}^{\frac{n-3}{2}}$C.2${\;}^{\frac{n-1}{2}}$D.2${\;}^{\frac{n}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實(shí)數(shù)u,v滿足u>|v|,2u=3(u2-v2),則3u+v的取值范圍是[$\frac{3+2\sqrt{2}}{3},+∞$).

查看答案和解析>>

同步練習(xí)冊答案