【題目】某年級舉辦團知識競賽.、、四個班報名人數(shù)如下:

班別

人數(shù)

45

60

30

15

年級在報名的同學中按分層抽樣的方式抽取10名同學參加競賽,每位參加競賽的同學從10個關于團知識的題目中隨機抽取4個作答,全部答對的同學獲得一份獎品.

(Ⅰ)求各班參加競賽的人數(shù);

(Ⅱ)若班每位參加競賽的同學對每個題目答對的概率均為,求班恰好有2位同學獲得獎品的概率;

(Ⅲ)若這10個題目,小張同學只有2個答不對,記小張答對的題目數(shù)為,求的分布列及數(shù)學期望.

【答案】(1)見解析(2)

【解析】試題分析:(Ⅰ)由分層抽樣的概念可得、、四個班參加競賽的人數(shù);(Ⅱ)先計算出班中每位參加競賽的同學獲得獎品的概率為,故班中恰好有2位同學獲得獎品的概率為;(Ⅲ)由題意可得:的取值為2,3,4.服從超幾何分布,即可得出.

試題解析:(Ⅰ)、、四個班參加競賽的人數(shù)分別為:

,,.

(Ⅱ)根據(jù)題意,班中每位參加競賽的同學獲得獎品的概率為,

所以班中恰好有2位同學獲得獎品的概率為 .

(Ⅲ)由題意,取值為2,3,4,服從超幾何分布.

,,.

所以的分布列為:

2

3

4

所以 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】用長14.8 m的鋼條制作一個長方體容器的框架如果所制的底面的一邊比另一邊長0.5 m,那么容器的最大容積為________m3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于任意的實數(shù)m∈[0,1],mx2﹣2x﹣m≥2,則x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,A、B、C的對邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

K日 日期期

1日

2日

3日

4日

5日

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

(1)求這5天發(fā)芽數(shù)的中位數(shù);

(2)求這5天的平均發(fā)芽率;

(3)從3月1日至3月5日中任選2天,記前面一天發(fā)芽的種子數(shù)為m,后面一天發(fā)芽的種子數(shù)為n,用(m,n)的形式列出所有基本事件,并求滿足“”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,且Sn=2n2+n,n∈N,數(shù)列{bn}滿足an=4log2bn+3,n∈N.

(1)求an,bn

(2)求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;

(2)若時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若方程所表示的曲線為C,給出下列四個命題:

①若C為橢圓,則1t4t

②若C為雙曲線,則t4t1;

③曲線C不可能是圓;

④若C表示橢圓,且長軸在x軸上,則1t.

其中正確的命題是________(把所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系,曲線的參數(shù)方程為為參數(shù), ),直線的極坐標方程為.

(1)寫出曲線的普通方程和直線的直角坐標方程;

(2)為曲線上任意一點, 為直線任意一點,求的最小值.

查看答案和解析>>

同步練習冊答案