分析 由題意代值可得f(1)的值,由f(a)=2可得$\left\{\begin{array}{l}{a<0}\\{lo{g}_{2}(-a)=2}\end{array}\right.$或$\left\{\begin{array}{l}{x≥0}\\{{2}^{a-1}=2}\end{array}\right.$,解方程組可得.
解答 解:∵f(x)=$\left\{\begin{array}{l}{log_2}(-x),\;\;x<0\\{2^{x-1}},\;\;x≥0\end{array}$,
∴f(1)=21-1=1
∵f(a)=2,∴$\left\{\begin{array}{l}{a<0}\\{lo{g}_{2}(-a)=2}\end{array}\right.$或$\left\{\begin{array}{l}{x≥0}\\{{2}^{a-1}=2}\end{array}\right.$,
解得a=-4或a=2
故答案為:1;-4或2
點評 本題考查分段函數(shù)求值,屬基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $3\sqrt{5}$ | B. | 6$\sqrt{5}$ | C. | $4\sqrt{15}$ | D. | 2$\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 關于點($\frac{π}{12}$,0)對稱 | B. | 關于點($\frac{5π}{12}$,0)對稱 | ||
C. | 關于直線x=$\frac{5π}{12}$對稱 | D. | 關于直線x=$\frac{π}{12}$對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{5}$$\sqrt{10}$ | B. | -$\frac{4}{5}$$\sqrt{10}$ | C. | -$\sqrt{10}$ | D. | $\frac{2}{5}$$\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com