考點:三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)三角函數(shù)的恒等變換,正弦函數(shù)、余弦函數(shù)的圖象性質(zhì),函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,判斷各個選項是否正確,從而得出結(jié)論.
解答:
解:由于函數(shù)f(x)=2sin(
+
)sin(
-
)sinx=2[
(cos)2-
(sin)2]sinx=cosx•sinx=
sin2x,
∴f(
)=
sin
=
sin
=
,故①正確;
當(dāng)x∈[-
,
],2x∈[-
,
],故函數(shù)f(x)在[-
,
]上沒有單調(diào)性,故②不正確;
當(dāng)x=-
,求得f(x)=
sin(-
)=-
,為最大值,故f(x)的圖象關(guān)于直線x=-
對稱,故③不正確;
將函數(shù)f(x)的圖象向右平移
個單位可得到y(tǒng)=
sin2(x-
)=
sin(2x-
)=-
sin(
-2x)=
cos2x的圖象,故④正確;
若f(
-
)=
sin2(
-
)=
sin(x-
)=
,則sin(x-
)=
.
∵
≤x≤
,∴
≤x-
≤π,則cos(x-
)=-
,
∴cosx=cos[(x-
)+
]=cos(x-
)cos
-sin(x-
)sin
=-
×-
×=-
,故⑤正確,
故答案為:①④⑤.
點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,正弦函數(shù)、余弦函數(shù)的圖象性質(zhì),函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.