5.若sinx=a,且|a|≤1,x∈[0,2π],求x的值.

分析 由條件根據(jù)arcsina的意義,結(jié)合x(chóng)的范圍,求得x的值.

解答 解:當(dāng)a∈[0,1]時(shí),arcsina∈[0,$\frac{π}{2}$],由x∈[0,2π],求得x=arcsina,或x=π-arcsina.
當(dāng)a∈[-1,0]時(shí),arcsina∈[-$\frac{π}{2}$,0],由x∈[0,2π],求得x=2π+arcsina,或x=π-arcsina.

點(diǎn)評(píng) 本題主要考查三正弦函數(shù)的定義,解三角方程,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知虛數(shù)z1,z2滿足z12=z2
(1)若z1,z2為某實(shí)系數(shù)一元二次方程的兩根,求z1,z2;
(2)若z1=1+bi,|z1|$≤\sqrt{2}$,ω=z2+3,求|ω|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.三棱柱A的直觀圖(圖1)及三視圖(圖2)(主視圖和俯視圖是正方形,左視圖是等腰直角三角形)如圖所示,A為A的中點(diǎn).
(Ⅰ)求證:B1C⊥平面BAC1;
(Ⅱ)求平面C1BA與平面C1BD的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,已知向量$\overrightarrow{m}$=(cosA,sinA),$\overrightarrow{n}$=(cosB,-sinB),且|$\overrightarrow{m}$-$\overrightarrow{n}$|=1.
(1)求角C的度數(shù);
(2)若c=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}滿足:a1=1,$\frac{1}{{a}_{n+1}}$=$\sqrt{\frac{1}{{{a}_{n}}^{2}}+4}$,n∈N*,其前n項(xiàng)和為Sn
(1)求證:數(shù)列{$\frac{1}{{{a}_{n}}^{2}}$}是等差數(shù)列;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為T(mén)n,且滿足:$\frac{{T}_{n+1}}{{{a}_{n}}^{2}}$=$\frac{{T}_{n}}{{{a}_{n+1}}^{2}}$+16n2-8n-3.試確定b1的值,使得數(shù)列{bn}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{1}{2}$,它的一個(gè)頂點(diǎn)恰好是拋物線x2=-12y的焦點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)M(m,0)的直線l與橢圓C相切(m<-2$\sqrt{3}$),直線l與y軸交于點(diǎn)N,當(dāng)m為何值時(shí)△OMN的面積有最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.一個(gè)幾何體的三視圖如圖所示,俯視圖為等邊三角形,若其體積為8$\sqrt{3}$,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.給出下列命題:
①若a⊥b,b⊥c,則a∥c; 
②若a∥b,b⊥c,則a⊥c;
③若a⊥b,a不平行于c,則c一定不垂直于b;
④若a⊥b,b不垂直于c,則a一定不垂直于c.
其中正確命題的序號(hào)是②.(填寫(xiě)所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.將無(wú)蓋正方體紙盒展開(kāi)如圖,則直線AB、CD在原正方體中的位置關(guān)系是( 。
A.平行B.相交且垂直C.相交成60°D.異面

查看答案和解析>>

同步練習(xí)冊(cè)答案