19.若橢圓C1:$\frac{x^2}{4}$+$\frac{y^2}{b^2}$=1(0<b<2)的離心率等于$\frac{{\sqrt{3}}}{2}$,拋物線C2:x2=2py(p>0)的焦點在橢圓C1的頂點上.
(1)求拋物線C2的方程;
(2)設(shè)M(x1,y1)和N(x2,y2)為拋物線C2上的兩個動點,其中y1≠y2且y1+y2=4,線段MN的垂直平分線l與y軸交于點P,求△MNP面積的最大值.

分析 (1)由已知可得a=2,離心率$e=\frac{c}{a}=\frac{{\sqrt{4-{b^2}}}}{2}=\frac{{\sqrt{3}}}{2}$,解得得b2.進而定點拋物線的焦點,可得p.
(2)設(shè)線段MN中點A(x0,y0),利用中點坐標公式與斜率的計算公式可得:kMN=$\frac{{x}_{0}}{2}$.可得直線l的方程為$y-2=-\frac{2}{x_0}({x-{x_0}})$,直線l過定點B(0,4).與拋物線方程聯(lián)立,再利用弦長公式、根與系數(shù)的關(guān)系可得|MN|,利用點到直線的距離公式可得點B到MN的距離d,利用三角形面積計算公式、基本不等式的性質(zhì)即可得出.

解答 解:(1)已知橢圓的長半軸長為a=2,半焦距$c=\sqrt{4-{b^2}}$,由離心率$e=\frac{c}{a}=\frac{{\sqrt{4-{b^2}}}}{2}=\frac{{\sqrt{3}}}{2}$,得b2=1.
∴橢圓的上頂點為(0,1),即拋物線的焦點為(0,1),
∴p=2,拋物線的方程為x2=4y.
(2)設(shè)線段MN中點A(x0,y0),則${x_0}=\frac{{{x_1}+{x_2}}}{2},{y_0}=\frac{{{y_1}+{y_2}}}{2},{k_{MN}}=\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}=\frac{{\frac{x_2^2}{4}-\frac{x_1^2}{4}}}{{{x_2}-{x_1}}}=\frac{1}{4}({{x_1}+{x_2}})=\frac{x_0}{2}$,
∴直線l的方程為$y-2=-\frac{2}{x_0}({x-{x_0}})$,即2x+x0(-4+y)=0,∴l(xiāng)過定點B(0,4).
聯(lián)立$\left\{\begin{array}{l}y-2=\frac{x_0}{2}({x-{x_0}})\\{x^2}=4y\end{array}\right.⇒{x^2}-2x{x_0}+2x_0^2-8=0$,得$△=4x_0^2-4({2x_0^2-8})>0⇒-2\sqrt{2}<{x_0}<2\sqrt{2}$,$|{MN}|=\sqrt{1+\frac{x_0^2}{4}}|{{x_1}-{x_2}}|=\sqrt{({1+\frac{x_0^2}{4}})({32-4x_0^2})}=\sqrt{({4+x_0^2})({8-x_0^2})}$,
設(shè)B(0,4)到MN的距離$d=|{BQ}|=\sqrt{x_0^2+4}$,
∴${S_{△ABC}}=\frac{1}{2}|{MN}|•d=\frac{1}{2}\sqrt{({4+x_0^2})({8-x_0^2})}•\sqrt{x_0^2+4}$=$\frac{1}{2}\sqrt{\frac{1}{2}({x_0^2+4})({x_0^2+4})({16-2x_0^2})}≤\frac{1}{2}\sqrt{\frac{1}{2}{{({\frac{24}{3}})}^3}}=8$,當且僅當$x_0^2+4=16-2x_0^2$,即x0=±2時取等號.
∴S△MNP的最大值為8.

點評 本題考查了橢圓與拋物線的標準方程及其性質(zhì)、直線與拋物線相交弦長問題、一元二次方程的根與系數(shù)的關(guān)系、弦長公式、點到直線的距離公式、基本不等式的性質(zhì)、垂直平分線的性質(zhì),考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}x,x<1\\{x^3}-\frac{1}{x}+1,x≥1\end{array}$,則不等式f(6-x2)>f(x)的解集為(-3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x-lnx+a-1,g(x)=$\frac{x^2}{2}$+ax-xlnx,其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)當x≥1時,g(x)的最小值大于$\frac{3}{2}$-lna,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點(1,1)到直線x-y+1=0的距離是( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}的公比為q(0<q<1),且a2+a5=$\frac{9}{8}$,a3a4=$\frac{1}{8}$.
(I)求數(shù)列{an}的通項公式;
(II)若bn=an•(log2an),求bn的前n項和Tn
(III)設(shè)該等比數(shù)列{an}的前n項和為Sn,正整數(shù)m,n滿足$\frac{{S}_{n}-m}{{S}_{n+1}-m}$<$\frac{1}{2}$,求出所有符合條件的m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,a=5,c=2,S△ABC=4,則b=$\sqrt{17}$或$\sqrt{41}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若C252x=C25x+4,則x的值為( 。
A.4B.7C.4或7D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=1-$\sqrt{x+1}$,g(x)=ln(ax2-3x+1),若對任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實數(shù)a的最大值為( 。
A.2B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.雙曲線$\frac{x^2}{9}-\frac{y^2}{3}=1$的漸近線方程為y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

同步練習(xí)冊答案