已知an-an-1=n(n≥2),a1=2,求數(shù)列{an}的通項公式.
考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學歸納法
分析:由an-an-1=n(n≥2),a1=2,利用累加法進行求解即可.
解答: 解:∵an-an-1=n(n≥2),a1=2,
∴a2-a1=2,a3-a2=3,

an-an-1=n,
等式兩邊相加得an-a1=2+3+…+(n-1)+n,
則an=a1+2+3+…+(n-1)+n=2+2+3+…+(n-1)+n=2+
(n-1)(n+2)
2
=
n2+n+2
2

即數(shù)列{an}的通項公式為=
n2+n+2
2
點評:本題主要考查數(shù)列的通項公式的求解,利用數(shù)列的遞推公式,利用累加法是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知cosB(tanAtanB+tanCtanB)=tanAtanC,
(1)求證:a,b,c成等比數(shù)列;
(2)若a=1,c=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果
x
2
是第三象限角,則x在
 
象限和
 
半軸.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)滿足f(-2+x)=f(-2-x),f(x)中有最小值-2,且f(x)的圖象被x軸截得的線段長為4,求此函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的內(nèi)角A,B,C所對邊的長分別是a,b,c,且a=2
3
b,C=
π
6

(Ⅰ)求tanA的值;
(Ⅱ)若△ABC的面積為2
3
,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=x+1與圓x2+y2=24相交于A、B兩點,求弦長|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosA=
1
3

(1)求cos(B+C);
(2)若a=2,S△ABC=
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)直線l的斜率k滿足|k|<1,求直線l的傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

F是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點,過點F向C的一條漸近線引垂線,垂足為A,交另一條漸近線于點B.若2
AF
=
FB
,則C的離心率是( 。
A、
2
3
3
B、
14
3
C、
2
D、2

查看答案和解析>>

同步練習冊答案