15.已知函數(shù)y=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的圖象如圖所示,則該函數(shù)的解析式是y=2sin(2x+$\frac{π}{6}$).

分析 由圖可知,A=2,由點(0,1)在函數(shù)的圖象上,可得sinφ=$\frac{1}{2}$,利用五點作圖法可解得φ,又點(-$\frac{7π}{12}$,0)在函數(shù)的圖象上,進而解得ω,從而得解該函數(shù)的解析式.

解答 解:∵由圖知A=2,y=2sin(ωx+φ),
∵點(0,1),在函數(shù)的圖象上,
∴2sinφ=1,解得:sinφ=$\frac{1}{2}$,
∴由|φ|<π,可得:φ=$\frac{π}{6}$,或$\frac{5π}{6}$,
∵點(-$\frac{7π}{12}$,0),在函數(shù)的圖象上,可得:2sin(-$\frac{7π}{12}$ω+$\frac{π}{6}$)=0,或2sin(-$\frac{7π}{12}$ω+$\frac{5π}{6}$)=0,
∴可得:-$\frac{7π}{12}$ω+$\frac{π}{6}$=2kπ+π,k∈Z,或-$\frac{7π}{12}$ω+$\frac{5π}{6}$=2kπ+π,k∈Z,
解得:ω=-$\frac{24}{7}$k-$\frac{10}{7}$,或ω=-$\frac{24k}{7}$-$\frac{2}{7}$,k∈Z,
∵ω>0,
∴當k=-1時,ω=2,或$\frac{22}{7}$,
∴y=2sin(2x+$\frac{π}{6}$).或y=2sin($\frac{22}{7}$x+$\frac{π}{6}$)(驗證,舍去).
故答案為:y=2sin(2x+$\frac{π}{6}$).

點評 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了正弦函數(shù)的圖象和性質的應用,求ω是解題的難點,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.一個空間幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.4+3πB.4+4πC.4-$\frac{3π}{2}$D.4+$\frac{5π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知a,b∈R,i為虛數(shù)單位,若$\frac{a-2i}{1+i}$=1-bi,則a+b的值為( 。
A.6B.7C.5D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=Asin(wx+φ)(A>0,w>0,φ∈R)的部分圖象如圖所示,則將y=f(x)的圖象向右平移π6個單位后得到g(x),得到的函數(shù)圖象對稱軸為x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,函數(shù)g(x)的解析式為y=sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知實數(shù)x,y滿足條件$\left\{{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤2}\end{array}}\right.$,則使不等式x+2y≥2成立的點(x,y)的區(qū)域的面積為( 。
A.1B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知集合A={1,a},B={1,3,4},且A∩B={1,3},則實數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設各項均為正整數(shù)的無窮等差數(shù)列{an},滿足a54=4028,且存在正整數(shù)k,使a1,a54,ak成等比數(shù)列,則公差d的所有可能取值之和為301.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知等差數(shù)列{an}的前n項和為Sn,若S5=20,a7=4a3,則S10=( 。
A.110B.115C.120D.125

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=4+2ax-1的圖象恒過定點P,則點P的坐標是( 。
A.(1,6)B.(1,5)C.(0,5)D.(5,0)

查看答案和解析>>

同步練習冊答案