7.在半徑是13cm的球面上有A、B、C三點(diǎn),AB=10cm,BC=6cm,CA=8cm,求球心到平面ABC的距離.

分析 由AB=6cm,BC=8cm,CA=10cm,可得AC即為A、B、C三點(diǎn)所在圓的直徑,取AC的中點(diǎn)M,連接OM,則OM即為球心到平面ABC的距離,在Rt△OMA中,OA=13cm,MA=5cm,則OM=12cm.

解答 解:如圖所示:
∵AB=6 cm,BC=8cm,CA=10cm,
∴∠CBA=90°
∴取AC的中點(diǎn)M,則球面上A、B、C三點(diǎn)所在的圓即為⊙M,連接OM,則OM即為球心到平面ABC的距離,
在Rt△OMA中,OA=13cm,MA=5cm,
∴OM=12cm,即球心到平面ABC的距離為12cm.

點(diǎn)評(píng) 本小題主要考查球心到平面ABC的距離,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)數(shù)列{an}的首項(xiàng)a1=t,Sn滿足5Sn-3Sn-1=3(n≥2,n∈N*),是否存在常數(shù)t,使得數(shù)列{an}為等比數(shù)列,若存在求出t,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)集合A的元素都是正整數(shù),滿足:①A的元素個(gè)數(shù)不小于3;②若a∈A,b∈A,1<a<b,則1+ab∈A.③若a∈A,則a的所有因子都屬于A.回答下面的問題:
(1)證明:1,2,3,4,5,均為A中元素;
(2)問:2011是否屬于A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知tan$\frac{α}{2}$tan$\frac{a-β}{2}$=-6
(1)求證5cos(α-$\frac{β}{2}$)+7cos$\frac{β}{2}$=0
(2)若tan$\frac{α}{2}$=2,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下面使用類比推理正確的是( 。
A.直線a∥b,b∥c,則a∥c,類推出:向量$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow c$
B.同一平面內(nèi),直線a,b,c,若a⊥c,b⊥c,則a∥b.類推出:空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b
C.實(shí)數(shù)a,b,若方程x2+ax+b=0有實(shí)數(shù)根,則a2≥4b.類推出:復(fù)數(shù)a,b,若方程x2+ax+b=0有實(shí)數(shù)根,則a2≥4b
D.以點(diǎn)(0,0)為圓心,r為半徑的圓的方程為x2+y2=r2.類推出:以點(diǎn)(0,0,0)為球心,r為半徑的球的方程為x2+y2+z2=r2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示,某鎮(zhèn)有一塊空地△OAB,其中OA=3km,OB=3$\sqrt{3}$km,∠AOB=90°.當(dāng)?shù)劓?zhèn)政府規(guī)劃將這塊空地改造成一個(gè)旅游景點(diǎn),擬在中間挖一個(gè)人工湖△OMN,其中M,N都在邊A,B上,且∠MON=30°,挖出的泥土堆放在△OAM地帶上形成假山,剩下的△OBN地帶開設(shè)兒童游樂場(chǎng).為安全起見,需在△OAN的一周安裝防護(hù)網(wǎng).
(1)當(dāng)AM=$\frac{3}{2}$km時(shí),求防護(hù)網(wǎng)的總長(zhǎng)度;
(2)若要求挖人工湖用地△OMN的面積是堆假山用地△OAM的面積的$\sqrt{3}$倍,試確定∠AOM的大;
(3)為節(jié)省投入資金,人工湖△OMN的面積要盡可能小,問如何設(shè)計(jì)施工方案,可使△OMN 的面積最小?最小面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=nlnx-mx+m,m,n∈R
(1)證明:曲線y=f(x)必經(jīng)過過定點(diǎn)(1,0);
(2)若曲線y=f(x)與x軸相切,證明 m=n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓b2x2+a2y2=a2b2(a>b>0)截直線l1:bx-ay=ab所得弦長(zhǎng)為2$\sqrt{2}$,過橢圓右焦點(diǎn)且斜率為$\sqrt{3}$的直線l2被橢圓截得的弦長(zhǎng)是橢圓長(zhǎng)軸長(zhǎng)的$\frac{2}{5}$,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.函數(shù)f(x)=|2x-1|-|x-2|,若f(x)≥0,
(1)求x的取值范圍;
(2)若f(x)=3|x-1|,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案