已知l1過點(diǎn)P1(4,2),l2過點(diǎn)P2(-1,3),若l1∥l2,且l1與l2間距離最大,則l1的方程是
 
考點(diǎn):直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:本題通過條件“l(fā)1與l2間距離最大”,分析得到直線l1、l2都直線P1P2垂直,從而得到直線的斜率,由點(diǎn)斜式寫出直線的方程,得到本題結(jié)論.
解答: 解:∵l1過點(diǎn)P1(4,2),
∴過點(diǎn)P1(4,2)作直線l2的垂線,垂足為H,
則有P1H長為兩直線l1、l2間的距離.
∵l2過點(diǎn)P2(-1,3),
∴P1H≤P1P2
∴l(xiāng)1與l2間距離最大時,直線l1、l2都直線P1P2垂直.
∵k P1P2=
3-2
-1-4
=-
1
5

∴直線l1、l2都的斜率均為5.
∴l(xiāng)1的方程是:y-2=5(x-4),即5x-y-18=0.
∴故答案為:5x-y-18=0.
點(diǎn)評:本題考查了直線的點(diǎn)斜式方程,本題難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,E、F、G、H、K、L分別為AB、BB1、B1C1、C1D1、D1D、DA的中點(diǎn),求證:A1C⊥平面EFGHKL.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x-1)(log2k)2-6xlog4k+x+1,在(0,1)恒為正,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},前n項(xiàng)和為Sn,若an+1>an>0,且滿足Sn=
1
2
(an2+n-1).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足bn=
an
an+1
+
an+1
an
,求數(shù)列{bn}的前n項(xiàng)和Tn;
(Ⅲ)設(shè)cn=2n
an+1
n
-λ),若數(shù)列{cn}是單調(diào)遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(
1
3
x<(
1
5
x,則x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為得到函數(shù)y=cosx的圖象,可以把y=sinx的圖象向右平移φ個單位得到,則φ的最小正值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個命題p:關(guān)于x方程求(a2-4)x2+(a+2)x-1≥0的解集為∅,q:方程x2+x+a=0有一正根一負(fù)根,若¬p是假命題,p∧q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn,滿足an+Sn=2n(n∈N*),記bn=2-an
(1)求證:數(shù)列{bn}是等比數(shù)列,并求數(shù)列{bn}的前n項(xiàng)和Bn;
(2)求b1(Bn-b1)+b2(Bn-b2)+bn-1(Bn-bn-1)(n≥2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)a 
1
2
a 
1
3
a 
1
6
=
 
;
(2)a 
2
3
a 
3
4
÷a 
5
6
=
 
;
(3)(x 
1
4
y -
2
3
12=
 
;
(4)(
3
+
2
2014
3
-
2
2014=
 
;
(5)64 -
2
3
=
 

(6)(2a-3b -
2
3
)(-3a-1b)÷(4a-4b -
5
3
)=
 
;
(7)0.027 -
1
3
-(-
1
7
-2+(2
7
9
 
1
2
-(
2
-1)0=
 

查看答案和解析>>

同步練習(xí)冊答案