17.已知命題p:?x0∈R,x0>1,則¬p為( 。
A.?x∈R,x≤1B.?x∈R,x≤1C.?x∈R,x<1D.?x∈R,x<1

分析 由特稱命題的否定方法可得結(jié)論.

解答 解:由特稱命題的否定可知:
¬p:?x∈R,x≤1
故選:A.

點(diǎn)評 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)x∈[$\frac{π}{2}$,$\frac{3π}{4}$],則函數(shù)f(x)=sinx-cosx的值域是[0,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,已知曲線C:$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=2sinθ\end{array}\right.(θ為參數(shù))$,以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.
(1)寫出直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)在曲線C上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{2x+y≤6}\end{array}\right.$,則x+y的取值范圍為( 。
A.[2,5]B.[2,$\frac{7}{2}$]C.[$\frac{7}{2}$,5]D.[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中為偶函數(shù)的是( 。
A.y=x+$\frac{1}{x}$B.y=x3C.y=$\sqrt{x}$D.y=ex+e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“若整數(shù)a,b都是偶數(shù),則a+b是偶數(shù)”的逆否命題為( 。
A.若整數(shù)a,b中有一個(gè)是偶數(shù),則a+b是偶數(shù)
B.若整數(shù)a,b都不是偶數(shù),則a+b不是偶數(shù)
C.若整數(shù)a,b不是偶數(shù),則a+b都不是偶數(shù)
D.若整數(shù)a,b不是偶數(shù),則a+b不都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知圓C:x2+y2+2x-4y=0,則圓C的圓心坐標(biāo)為( 。
A.(1,-2)B.(-1,2)C.(1,2)D.(-1,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知集合A={x|1<x<2},B={x|x>a},若“x∈A”是“x∈B”的充分不必要條件,則實(shí)數(shù)a的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$f(x)=\left\{\begin{array}{l}(4-a)x\;,\;\;x∈(-∞\;,\;1]\\{a^x}\;,\;\;\;x∈(1\;,\;+∞)\end{array}\right.$是R上的增函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A.(1,4)B.[1,4)C.(2,4)D.[2,4)

查看答案和解析>>

同步練習(xí)冊答案