分析 要求函數(shù)的解析式,已知已有x>0時(shí)的函數(shù)解析式,只要根據(jù)題意求出x<0及x=0時(shí)的即可,根據(jù)奇函數(shù)的性質(zhì)容易得f(0)=0,而x<0時(shí),由-x>0及f(-x)=-f(x)可求.
解答 解:設(shè)x<0,則-x>0
∵當(dāng)x>0時(shí),$f(x)=-\sqrt{x+1}$,∴f(-x)=-$\sqrt{-x+1}$
由函數(shù)f(x)為奇函數(shù)可得f(-x)=-f(x)
∴f(x)=-f(-x)=$\sqrt{-x+1}$,x<0
∵f(0)=0
∴f(x)=$\left\{\begin{array}{l}{-\sqrt{x+1},x>0}\\{0,x=0}\\{\sqrt{-x+1},x<0}\end{array}\right.$.
故答案為:f(x)=$\left\{\begin{array}{l}{-\sqrt{x+1},x>0}\\{0,x=0}\\{\sqrt{-x+1},x<0}\end{array}\right.$.
點(diǎn)評(píng) 本題主要考查了利用函數(shù)的奇偶性求解函數(shù)的解析式,解題中要注意函數(shù)的定義域是R,不用漏掉對(duì)x=0時(shí)的考慮.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25 | B. | 5 | C. | 7 | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | μ=$\frac{k-n}{k-m}$ | B. | μ=$\frac{n-m}{n-k}$ | C. | μ=$\frac{n-m}{k-m}$ | D. | μ=$\frac{k-m}{k-n}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com