16.已知等差數(shù)列{an}中,公差d>0,且滿(mǎn)足:a2•a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$的前n項(xiàng)和為Sn,令f(n)=$\frac{S_n}{n+16}$(n∈N*),求f(n)的最大值.

分析 (1)利用等差數(shù)列的通項(xiàng)公式即可得出;
(2)利用“裂項(xiàng)求和”、基本不等式的性質(zhì)即可得出.

解答 解:(1)由題設(shè)知:$\left\{{\begin{array}{l}{{a_2}•{a_3}=45}\\{{a_1}+{a_4}={a_2}+{a_3}=14}\end{array}}\right.$,
∴$\left\{{\begin{array}{l}{{a_2}=5}\\{{a_3}=9}\end{array}}\right.或\left\{{\begin{array}{l}{{a_2}=9}\\{{a_3}=5}\end{array}}\right.$,
∵d>0,∴a2=5,a3=9.
∴an=4n-3.
(2)∵$\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(4n-3)(4n+1)}=\frac{1}{4}(\frac{1}{4n-3}-\frac{1}{4n+1})$,
∴${S_n}=\frac{1}{4}[(\frac{1}{1}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{9})+…+(\frac{1}{4n-3}-\frac{1}{4n+1})]=\frac{n}{4n+1}$,
∴$f(n)=\frac{S_n}{n+16}=\frac{{\frac{n}{4n+1}}}{n+16}=\frac{n}{{4{n^2}+65n+16}}=\frac{1}{{4n+\frac{16}{n}+65}}≤\frac{1}{81}$(當(dāng)n=2時(shí)取=).

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)集合X是實(shí)數(shù)集R的子集,如果x0∈R,滿(mǎn)足:對(duì)任意a>0,都存在x∈X,使得0<|x-x0|<a,則稱(chēng)x0為集合X的聚點(diǎn),現(xiàn)有如下四個(gè)集合:
①$\{\frac{2n+1}{n}|n∈Z,n≥2\}$②{x∈R|x≠1}③$\{\frac{n-1}{n}|n∈Z,n≥1\}$④整數(shù)集Z;
其中以1為聚點(diǎn)的集合是(  )
A.②③B.①④C.①③D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,△ABC內(nèi)接于⊙O,AE與⊙O相切于點(diǎn)A,BD平分∠ABC,交⊙O于點(diǎn)D,交AE的延長(zhǎng)線于點(diǎn)E,DF⊥AE于點(diǎn)F.
(Ⅰ)求證:$\frac{AB}{AD}$=$\frac{AE}{DE}$;
(Ⅱ)求證:AC=2AF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ex-ax,a∈R.
(Ⅰ)若函數(shù)f(x)在x=0處的切線過(guò)點(diǎn)(1,0),求a的值;
(Ⅱ)若函數(shù)f(x)在(-1,+∞)上不存在零點(diǎn),求a的取值范圍;
(Ⅲ)若a=1,設(shè)函數(shù)$g(x)=\frac{1}{f(x)+ax}+\frac{4x}{{{e^x}-f(x)+4}}$,求證:當(dāng)x≥0時(shí),g(x)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若a,b∈[0,2],則方程x2+$\sqrt{a}x+\frac{2}$=0有實(shí)數(shù)解的概率是( 。
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在某樣本的頻率分布直方圖中,共有7個(gè)小長(zhǎng)方形,若第三個(gè)小長(zhǎng)方形的面積為其他6個(gè)小長(zhǎng)方形的面積和的$\frac{1}{4}$,且樣本容量為100,則第三組數(shù)據(jù)的頻數(shù)為( 。
A.25B.0.2C.0.25D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)f(x)由下表定義:
x25314
f(x)12345
若a0=1,an+1=f(an),n=0,1,2,…,則a2016=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知四面體的四個(gè)頂點(diǎn)S(0,6,4),A(3,5,3),B(-2,11,-5),C(1,-1,4),求從頂點(diǎn)S向底面ABC所引高的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.定義在[-2,2]上的奇函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞減,則不等式f(1-x)+f(-x)<0的解集為[-1,$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案