分析 (1)根據(jù)遞推式計算,猜想;
(2)檢驗n=1時猜想成立,假設(shè)n=k時猜想成立,證明當(dāng)n=k+1時猜想也成立.
解答 解:(1)a2=$\frac{2×1}{2+1}=\frac{2}{3}$,a3=$\frac{2×\frac{2}{3}}{2+\frac{2}{3}}$=$\frac{1}{2}$,a4=$\frac{2×\frac{1}{2}}{2+\frac{1}{2}}$=$\frac{2}{5}$.
猜想:an=$\frac{2}{n+1}$.
證明:(2)當(dāng)n=1時,a1=$\frac{2}{1+1}=1$,結(jié)論成立,
假設(shè)n=k時猜想成立,即ak=$\frac{2}{k+1}$,
則ak+1=$\frac{2{a}_{k}}{2+{a}_{k}}$=$\frac{\frac{4}{k+1}}{2+\frac{2}{k+1}}$=$\frac{4}{2k+4}$=$\frac{2}{k+2}$=$\frac{2}{(k+1)+1}$.
即當(dāng)n=k+1時,猜想成立.
∴對一切n∈N,都有an=$\frac{2}{n+1}$.
點評 此題主要考查歸納法的證明,要熟練掌握數(shù)學(xué)歸納法的一般步驟,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{25}{3}$ | B. | $\frac{25}{8}$ | C. | $\frac{100}{9}$ | D. | $\frac{25}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com