分析 (1)由一元二次不等式的解集與一元二次方程的根的關(guān)系可以得出,ax2+bx+1=0的解為-1,2,由根系關(guān)系即可求得實數(shù)a,b的值
(2)要題意可得出一關(guān)于實數(shù)a,b的不等式組,要求3a-b的取值范圍可用線性規(guī)劃的知識來求,以所得不等式組作為約束條件,以3a-b作為目標函數(shù)即可
解答 解:(1)由題意可知:a<0,且ax2+bx+1=0的解為-1,2,
∴$\left\{\begin{array}{l}{a<0}\\{\frac{1}{a}=-2}\\{-\frac{a}=1}\end{array}\right.$,解得:a=-$\frac{1}{2}$,b=$\frac{1}{2}$;
(2)由題意可得 $\left\{\begin{array}{l}{f(-1)>0}\\{f(2)>0}\end{array}\right.$,⇒$\left\{\begin{array}{l}{a-b+1>0}\\{4a+2b+1>0}\end{array}\right.$,
畫出可行域,如圖示:
由 $\left\{\begin{array}{l}{a-b+1=0}\\{4a+2b+1=0}\end{array}\right.$得{ $\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=\frac{1}{2}}\end{array}\right.$,
作平行直線系z=3a-b可知z=3a-b的取值范圍是(-2,+∞).
點評 本題考查一元二次不等式的應(yīng)用,求解本題的關(guān)鍵是理解一元二次不等式的解集與一元二次方程的根的關(guān)系以及將第二問中求3a-b的取值范圍的問題轉(zhuǎn)化到線性規(guī)劃中求解.做題時靈活轉(zhuǎn)化是降低題目難度順利解題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{2}{3}$,1) | B. | ($\frac{1}{2}$,$\frac{2}{3}$) | C. | ($\frac{1}{3}$,$\frac{1}{2}$) | D. | (0,$\frac{1}{3}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com