【題目】 中,內(nèi)角的對邊分別為,已知,且 .

(1)求的面積.

(2)已知等差數(shù)列的公差不為零,若,且成等比數(shù)列,求的前項和.

【答案】(1)(2)

【解析】試題分析: (Ⅰ)由正弦定理得b2+c2-a2=bc,由余弦定理得A,由此能求出△ABC的面積.(Ⅱ)數(shù)列{an}的公差為dd≠0,由a1cosA=1a1=2,由a2a4,a8成等比數(shù)列,得d=2,從而由此利用裂項求和法能求出前項和.

試題解析:

解:(1)∵在中,內(nèi)角的對邊分別為,

,且, .

∴由正弦定理得: ,即: ,

∴由余弦定理得: ,

又∵,∴,

∵且 ,即: ,即: ,

聯(lián)立解得: ,

的面積是: .

(2)數(shù)列的公差為,由,得,

成等比數(shù)列,得,解得,

,有,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的部分圖象如圖所示

)寫出及圖中的值.

)設,求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知函數(shù)

(1)求函數(shù)的最小正周期和單調遞增區(qū)間;

(2)若在中,角,的對邊分別為,,,為銳角,且,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市擬興建九座高架橋,新聞媒體對此進行了問卷調查,在所有參與調查的市民中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:

(1)在所有參與調查的人中,用分層抽樣的方法抽取部分市民做進一步調研(不同態(tài)度的群體中亦按年齡分層抽樣),已知從“保留”態(tài)度的人中抽取了19人,則在“支持”態(tài)度的群體中,年齡在40歲以下(含40歲)的人有多少被抽;

(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取6人做進一步的調研,將此6人看作一個總體,在這6人中任意選取2人,求至少有1人在40歲以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, , , 的中點.

)求證: 平面

)求二面角的余弦值.

)在線段上是否存在點,使得,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓 的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限相交于點, .

(1)求橢圓的標準方程;

(2)設橢圓的左頂點為,右頂點為,點是橢圓上的動點,且點與點, 不重合,直線與直線相交于點,直線與直線相交于點,求證:以線段為直徑的圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在 , 上的奇函數(shù),當, , .

Ⅰ)求的解析式;

Ⅱ)設, , ,求證:當時, 恒成立;

Ⅲ)是否存在實數(shù),使得當, 時, 的最小值是?如果存在,

求出實數(shù)的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著我國經(jīng)濟的快速發(fā)展,民用汽車的保有量也迅速增長.機動車保有量的發(fā)展影響到環(huán)境質量、交通安全、道路建設等諸多方面.在我國,尤其是大中型城市,機動車已成為城市空氣污染的重要來源.因此,合理預測機動車保有量是未來進行機動車污染防治規(guī)劃、道路發(fā)展規(guī)劃等的重要前提.從2012年到2016年,根據(jù)“云南省某市國民經(jīng)濟和社會發(fā)展統(tǒng)計公報”中公布的數(shù)據(jù),該市機動車保有量數(shù)據(jù)如表所示.

年份

2012

2013

2014

2015

2016

年份代碼

1

2

3

4

5

機動車保有量(萬輛)

169

181

196

215

230

(1)在圖所給的坐標系中作出數(shù)據(jù)對應的散點圖;

(2)建立機動車保有量關于年份代碼的回歸方程;

(3)按照當前的變化趨勢,預測2017年該市機動車保有量.

附注:回歸直線方程中的斜率和截距的最小二乘估計公式分別為:

, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 分別是的中點,底面是邊長為2的正方形, ,且平面平面

1)求證:平面平面;

2)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

同步練習冊答案