已知某個(gè)幾何體的三視圖,根據(jù)圖中標(biāo)出的尺寸,這個(gè)幾何體的體積是(  )
A、(
3
12
+1)π
B、(
3
3
+1)π
C、(
3
6
+1)π
D、(
3
3
+2)π
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:這個(gè)幾何體的上半部分是圓錐的一半,下半部分是圓柱.
解答: 解:這個(gè)幾何體的上半部分是圓錐的一半,下半部分是圓柱.
圓錐的底面半徑為1,母線長(zhǎng)為2,高為
3

圓柱的底面半徑為1,高為1;
V=
1
2
1
3
π12
3
=
3
π
6
,
V=π•12•1=π,
則V=π+
3
π
6
=(
3
6
+1
)π.
故選C.
點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵在于形成空間圖形,注意三視圖中量的關(guān)系及轉(zhuǎn)化.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3x
+
1
2
x
5的展開(kāi)式中常數(shù)項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:
1
2
≤x≤1,q:x2-(a+1)x+a≤0,若a<
1
2
,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3x
2x-1
,若F(x)=f(x)+f(-x),那么F(x)是( 。
A、奇函數(shù)
B、偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x≤0},則下列四個(gè)關(guān)系中正確的是( 。
A、0∈AB、0∉A
C、{0}∈AD、0⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)p:f(x)=x3+2x2+mx+1在(-∞,+∞)內(nèi)單調(diào)遞增,q:m≥2,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是奇函數(shù),當(dāng)x∈(0,+∞)時(shí),f(x)≤m(m<0),則f(x)的值域?yàn)椋ā 。?/div>
A、[m,-m]
B、(-∞,m]
C、[-m,+∞)
D、(-∞,m]∪[-m,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各函數(shù)中,最小值為2的是(  )
A、y=x+
1
x
B、y=sinx+
1
sinx
,x∈(0,2π)
C、y=
x2+3
x2+2
D、y=
x
+
4
x
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x(x-a)2,g(x)=-x2+(a-1)x+a(其中a為常數(shù)).
(Ⅰ)如果函數(shù)y=f(x)和y=g(x)有相同的極值點(diǎn),求a的值;
(Ⅱ)當(dāng)x∈(0,+∞),f(x)≥(a2+a+3)x恒成立,求a的取值范圍;
(Ⅲ)記函數(shù)H(x)=[f(x)-1]•[g(x)-1],若函數(shù)y=H(x)有5個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案