【題目】已知棱長為的正方體中,分別為棱和的中點(diǎn).
(1)證明:平面;
(2)求點(diǎn)到平面的距離.
【答案】(1)證明見解析;(2)
【解析】
(1)證法一:連結(jié)交于點(diǎn),利用平幾知識證四邊形為平行四邊形,再根據(jù)線面平行判定定理得結(jié)果;證法二:取中點(diǎn),利用平幾知識證∥,再根據(jù)線面平行判定定理得結(jié)果;
(2))解法一與解法二,利用等體積法求點(diǎn)到直線距離.
(1)證法一:如圖連結(jié)交于點(diǎn),則點(diǎn)為的中點(diǎn),連結(jié),
∵為的中點(diǎn),∴為的中位線,∴∥,
∵為的中點(diǎn),∴∥,,∴四邊形為平行四邊形
∴∥,∵平面,平面
∴∥平面.
證法二:如圖取中點(diǎn),連接,,因?yàn)檎襟w,
分別為中點(diǎn),所以可得四邊形和四邊形均為平行四邊
形,所以∥∥,所以平面即為平行四邊形所在平面,因?yàn)?/span>
為的中點(diǎn),所以也為中點(diǎn),且為中點(diǎn),所以∥,∴∥平面.
(2)解法一:延長到點(diǎn),使得,連結(jié),則∥平面,
則到平面的距離即到平面的距離,,點(diǎn)到平面的距
離為,,
設(shè)到平面的距離為,則,即
可得,即點(diǎn)到平面的距離為
解法二:由證法二知點(diǎn)到平面的距離為到平面的距離,所以,
且,,所以到平面的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高二年級組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車,自行打車的平均時間為 (單位:分鐘) ,而乘坐定制公交的平均時間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時,乘坐定制公交的平均時間少于自行打車的平均時間?
(2)求該校學(xué)生參加考試平均時間的表達(dá)式:討論的單調(diào)性,并說明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,點(diǎn)是線段上的動點(diǎn),以下結(jié)論:
①平面;
②;
③三棱錐,體積不變;
④為中點(diǎn)時,直線與平面所成角最大.
其中正確的序號為( )
A.①④B.②④C.①②③D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線方程為,求的值;
(2)求函數(shù)的極值點(diǎn);
(3)設(shè),若當(dāng)時,不等式恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與拋物線交于M,拋物線C的焦點(diǎn)為F,且.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)點(diǎn)Q是拋物線C上的動點(diǎn),點(diǎn)D,E在y軸上,圓內(nèi)切于三角形,求三角形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點(diǎn)坐標(biāo)為,,過垂直于長軸的直線交橢圓于、兩點(diǎn),且.
(1)求橢圓的方程;
(2)過的直線與橢圓交于不同的兩點(diǎn)、,則的內(nèi)切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是一直角梯形,,,,,底面.
(1)在線段上是否存在一點(diǎn)F,使得平面,若存在,求出的值;若不存在,試說明理由;
(2)在(1)的條件下,若與所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè)是的極值點(diǎn),求,并求的單調(diào)區(qū)間;
(2)當(dāng)時,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》是中國古代重要的數(shù)學(xué)著作,其記載的“日月歷法”曰:“陰陽之?dāng)?shù),日月之法,十九歲為一章,四章為一部,部七十六歲,二十部為一遂,遂千百五二十歲,….生數(shù)皆終,萬物復(fù)蘇,天以更元作紀(jì)歷”,某老年公寓住有20位老人,他們的年齡(都為正整數(shù))之和恰好為一遂,其中年長者已是奔百之齡(年齡介于90至100),其余19人的年齡依次相差一歲,則年長者的年齡為( )
A.94B.95C.96D.98
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com