分析 (1)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)確定函數(shù)的單調(diào)區(qū)間;
(2)求導(dǎo),利用零點(diǎn)存在定理判定g′(x)在(t,2)上總存在零點(diǎn)計(jì)算即得結(jié)論.
解答 解:(1)根據(jù)題意知,f′(x)=$\frac{a(1-x)}{x}$(x>0),
令f′(x)=0得:x=1,
∴當(dāng)a<0時(shí),f(x)的單調(diào)遞增區(qū)間為(1,+∞)、f(x)的單調(diào)遞減區(qū)間為(0,1];
(2)∵函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,
∴f′(2)=-$\frac{a}{2}$=1,即a=-2,
∴f(x)=-2lnx+2x-3,
∴g(x)=x3+(m+2)x2-2xm,
∴g′(x)=3x2+(2m+4)x-2,
∵g(x)在區(qū)間(t,2)上總不是單調(diào)函數(shù),且g′(0)=-2,
∴$\left\{\begin{array}{l}{g′(t)<0}\\{g′(2)>0}\end{array}\right.$,
由題意知:對(duì)于任意的t∈[0,1],g′(t)<0恒成立,
∴$\left\{\begin{array}{l}{g′(0)<0}\\{g′(1)<0}\\{g′(2)>0}\end{array}\right.$,
∴-$\frac{9}{2}$<m<-$\frac{5}{2}$.
點(diǎn)評(píng) 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值及與函數(shù)有關(guān)的綜合題,都體現(xiàn)了導(dǎo)數(shù)的重要性;此類問(wèn)題往往從求導(dǎo)入手,思路清晰;但綜合性較強(qiáng),需學(xué)生有較高的邏輯思維和運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com