已知函數(shù)y=f(2-x)的定義域?yàn)椋?,6),求函數(shù)y=f(x-1)的定義域.
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)y=f(2-x)的定義域求出函數(shù)f(x)的定義域,從而求出函數(shù)y=f(x-1)的定義域.
解答: 解:∵函數(shù)y=f(2-x)的定義域?yàn)椋?,6),
∴2<x<6,
即-6<-x<-2,
∴-4<2-x<0;
∴函數(shù)f(x-1)應(yīng)滿足
-4<x-1<0,
∴-3<x<1;
∴函數(shù)y=f(x-1)的定義域?yàn)椋?3,1).
點(diǎn)評(píng):本題考查了求函數(shù)定義域的問題,解題時(shí)要弄清函數(shù)y=f(2-x)、函數(shù)y=f(x)與y=f(x-1)的定義域的關(guān)系,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
3x-2
+
3x-4
=5,求
3x-2
-
3x-4
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,四邊形ABCD為菱形,∠ABC=60°,△PCB為正三角形,M,N分別為BC,PD的中點(diǎn).
(Ⅰ)求證:MN∥面APB;
(Ⅱ)若平面PCB⊥平面ABCD,求二面角B-NC-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}中,公差d>0,前n項(xiàng)和為Sn,且a2•a3=45,a1+a4=14,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)通過bn=
Sn
n+c
構(gòu)造一個(gè)新數(shù)列{bn},是否存在一個(gè)非零常數(shù)c,使{bn}也為等差數(shù)列;
(3)在(2)中,求f(n)=
bn
(n+30)•bn+1-62n
(n∈N*)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax(a為常數(shù))的圖象與y軸交于點(diǎn)A,曲線y=f(x)在點(diǎn)A處的切線斜率為-1.
(Ⅰ)求a的值及函數(shù)f(x)的極值
(Ⅱ)證明:當(dāng)x>0時(shí),x2<ex
(Ⅲ)證明:對(duì)任意給定的正數(shù)c,總存在x0,使得當(dāng)x∈(x0,+∞),恒有x2<cex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a3=8,an+1=2an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sinx-cosx)•cosx+1,求此函數(shù)在[
π
8
4
]上的單調(diào)區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-x-2,x∈[-5,5].若從區(qū)間[-5,5].內(nèi)隨機(jī)選取一個(gè)實(shí)數(shù)x0,則所選取的實(shí)數(shù)0滿足f(x0)≤0的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+x+a≤0},B={x|x2-x+2a-1<0},c={x|a≤x≤4a-9},且A,B,C中至少有一個(gè)不是空集,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案