4.在等差數(shù)列{an}中,前n項(xiàng)和為Sn,且S2013=-2013,a1008=3,則S2014等于(  )
A.2014B.-2014C.1007D.-1007

分析 由題意可得首項(xiàng)和公差的方程組,解方程組代入求和公式計(jì)算可得.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
∵S2013=-2013,a1008=3,
∴2013a1+$\frac{2013×2012}{2}$d=-2013,a1+1007d=3,
解得a1=-4025,d=4,
∴S2014=2014a1+$\frac{2014×2013}{2}$d
=-2014×4025+2014×4026=2014,
故選:A.

點(diǎn)評(píng) 本題考查等差數(shù)列的求和公式和通項(xiàng)公式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=an(an+1)數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和為T(mén)n,則T2n-Tn≥$\frac{1}{2}$(選“≥,>,≤,<”作為答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)復(fù)數(shù)z滿足1+i=z(2-i)(i為虛數(shù)單位),$\overline{z}$表示復(fù)數(shù)z的共扼復(fù)數(shù),則|$\overline{z}$+$\frac{3}{5}$|=( 。
A.1B.$\sqrt{2}$C.3D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求下列函數(shù)的定義域.
(I)y=1g(sinx)+$\sqrt{16-{x}^{2}}$;
(Ⅱ)y=$\sqrt{sinx}$+$\sqrt{tanx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.將函數(shù)y=sin2x的圖象向左平移$\frac{π}{6}$個(gè)單位,再把所得圖象上各點(diǎn)的橫坐標(biāo)擴(kuò)大為原來(lái)的2倍(縱坐標(biāo)不變)得到y(tǒng)=f(x)圖象.
(1)寫(xiě)出y=f(x)的解析式;
(2)求f(x)≤-$\frac{1}{2}$的解集;
(3)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系的極坐標(biāo)方程,已知曲線C1:$\left\{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù))與曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)分別寫(xiě)出曲線C1,C2的普通方程;
(2)求C1和C2公共弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知cosα=$\frac{2}{3}$,α∈(0,$\frac{π}{2}$),那么sin$\frac{α}{2}$=$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.橢圓x2+9y2=9的長(zhǎng)軸長(zhǎng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow$=4$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1).
(Ⅰ)試計(jì)算$\overrightarrow{a}$•$\overrightarrow$及|$\overrightarrow{a}$+$\overrightarrow$|的值; 
(Ⅱ)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案