解答:
解:(1)b=0,F(xiàn)(x)=f(x)-g(x)=x
2-alnx,(x>0)
∴F′(x)=2x-
=
當(dāng)a≤0時(shí),F(xiàn)′(x)>0,函數(shù)F(x)在(0,+∞)為單調(diào)遞增,
當(dāng)a>0時(shí),令F′(x)=0,解得x=
,
當(dāng)F′(x)>0,即x>
,f(x)為單調(diào)遞增,
當(dāng)F′(x)<0,即0<x<
,f(x)為單調(diào)遞減,
綜上所述,當(dāng)a≤0時(shí),函數(shù)F(x)在(0,+∞)單調(diào)遞增,
當(dāng)a>0時(shí),函數(shù)F(x)在(
,+∞)為單調(diào)遞增,(0,
)單調(diào)遞減,
(2)a=b=1時(shí),g(x)=lnx+x,與f(x)構(gòu)成方程組,解得x=1,y=1,
所以(1,1)是f(x)和g(x)的公共點(diǎn),
f(x)在點(diǎn)(1,1)處的切線方程是y=2x-1
∴若存在實(shí)常數(shù)k和m,使得f(x)≥kx+m和g(x)≤kx+m成立
即f(x)≥2x-1和g(x)≤2x-1同時(shí)成立
∵f(x)-2x+1=x
2-2x+1=(x-1)
2≥0,
∴f(x)≥2x-1,
令h(x)=g(x)-2x+1,則h′(x)=
-1=
,
∴h(x) 在(0,1)遞增,(1,+∞)遞減,
∴h(x)
max=h(1)=0,
∴h(x)≤0,即g(x)≤2x-1成立
∴存在k=2,m=-1使得f(x)≥kx+m和g(x)≤kx+m成立
(3)G′(x
0)的符號(hào)為正,理由如下:因?yàn)镚(x)=x
2+2-alnx-bx有兩個(gè)零點(diǎn)x
1,x
2,
則有x
12+2-alnx
1-bx
1=0,x
22+2-alnx
2-bx
2=0,兩式相減得x
12+2-alnx
1-bx
1-x
22-2+alnx
2+bx
2=0,
即x
1+x
2-b=
,
于是G′(x
0)=
2x0--b=(x
1+x
2-b)-1
=
[
ln-]=
[
ln-
]
①當(dāng)0<x
1+x
2時(shí),令
=t,則t>1,且G′(x
0)=
[lnt-
],
設(shè)u(t)=lnt-
,t>1,則u′(t)=
-
=
>0,
故u(t)在(1,+∞)上為增函數(shù),又u(1)=0,所以u(píng)(t)>0,
即lnt-
>0,又因?yàn)閍>0,x
2-x
1>0,所以G′(x
0)>0.
②當(dāng)0<x
2<x
1時(shí),同理可得G′(x
0)>0.
綜上所述,G′(x
0)的符號(hào)為正.