20.x>5是x>8的必要不充分條件.

分析 由x>8⇒x>5,反之不成立.即可判斷出結(jié)論.

解答 解:由x>8⇒x>5,反之不成立.
∴x>5是x>8的必要不充分條件.
故答案為:必要不充分.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì)、必要不充分條件,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知全集U=R,集合A={0,1,2},B={x∈Z|x2≤3},如圖陰影部分所表示的集合為{2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x3-$\frac{1}{2}m{x^2}$-1的導(dǎo)函數(shù)為f′(x),g(x)=emx+f′(x).
(Ⅰ)若f(2)=11,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)證明函數(shù)g(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
(Ⅲ)若對(duì)任意x1,x2∈[-1,1],都有|g(x1)-g(x2)|≤e+1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}滿足a1=20,an+1=an-2(n∈N*),則當(dāng)數(shù)列{an}的前n項(xiàng)和Sn取得最大值時(shí),n的值為10或11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.sin2(π+α)-cos(π+α)cosα+1的值是(  )
A.2B.1C.2sin2αD.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.甲,乙兩人從相距18千米的兩地同時(shí)出發(fā),相向而行$\frac{9}{5}$小時(shí)相遇.如果甲比乙先出發(fā)$\frac{2}{3}$小時(shí),那么乙出發(fā)后$\frac{3}{2}$小時(shí)兩人相遇.求:兩人的速度各是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知sin(π+α)=-$\frac{1}{2}$,計(jì)算:
(1)sin(5π-α):
(2)sin(α-3π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列命題中真命題的個(gè)數(shù)是( 。
①已知非零向量$\overrightarrow{a}$,$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|必大于|$\overrightarrow{a}$|與|$\overrightarrow$|中任意一個(gè);
②若$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$,則A,B,C為三角形的三個(gè)頂點(diǎn);
③設(shè)$\overrightarrow{a}$≠$\overrightarrow{0}$,若$\overrightarrow{a}$∥($\overrightarrow{a}$+$\overrightarrow$),則$\overrightarrow{a}$∥$\overrightarrow$;
④若|$\overrightarrow{a}$|-|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow$=$\overrightarrow{0}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知A(0,2,3),B(-2,1,6),C(1,-1,5),則平面ABC的法向量的坐標(biāo)為(1,1,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案