14.函數(shù)f(x)=x2+ax+b對任意實數(shù)x都有f(2+x)=f(2-x),那么必有( 。
A.f(-1)<f(2)<f(4)B.f(2)<f(-1)<f(4)C.f(2)<f(4)<f(-1)D.f(4)<f(2)<f(-1)

分析 先從條件“對任意實數(shù)x都有f(2+x)=f(2-x)”得到對稱軸,然后結(jié)合圖象判定函數(shù)值的大小關系即可.

解答 解:∵對任意實數(shù)x都有f(2+x)=f(2-x)
∴f(x)的對稱軸為x=2,而f(x)是開口向上的二次函數(shù)
∴由二次函數(shù)的性質(zhì)和圖形得到
自變量離對稱軸越近,函數(shù)值越小
∴f(2)<f(4)<f(-1)
故選:C

點評 本題考查了二次函數(shù)的圖象,通過圖象比較函數(shù)值的大小,數(shù)形結(jié)合解題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知某產(chǎn)品質(zhì)量指標服從正態(tài)分布 N(200,25),某用戶購買了 10000 件這種產(chǎn)品,記 X 表示 10000 件這種產(chǎn)品中質(zhì)量指標值大于 210 的產(chǎn)品件數(shù),則隨機變量 X 的數(shù)學期望 EX=( 。
附:(隨機變量ξ服從正態(tài)分布N(μ,δ2),則P(μ-δ<ξ<μ+δ)=68.26%,P(μ-2δ<ξ<μ+2δ)=95.44%)
A.6826B.3174C.228D.456

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知實數(shù)x,y滿足不等式$\left\{\begin{array}{l}|{x-y+1}|≥|{2x+3y-7}|\\ 0≤x≤2\end{array}\right.$,則x2+y2+4y的最小值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在△ABC中,BD為∠ABC的平分線,AB=3,BC=2,AC=$\sqrt{7}$,則sin∠ABD等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.直線l:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù))與圓C:$\left\{\begin{array}{l}x=2+2cosθ\\ y=1+2sinθ\end{array}\right.$(θ為參數(shù))的位置關系是( 。
A.相離B.相切C.相交且過圓心D.相交但不過圓心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知二次函數(shù)f(x)二次項系數(shù)為a,零點為2a,-a-3,函數(shù)g(x)由y=2x向下平移兩個單位得到,若f(x),g(x)滿足條件“對于?x∈R,f(x),g(x)至少有一個小于0”,則a的取值范圍是(-4,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知三梭錐P-ABC中,PA=4,AB=AC=2$\sqrt{3}$,BC=6,PA⊥面ABC,則此三棱錐的外接球的表面積為(  )
A.16πB.32πC.64πD.128π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.各項為正數(shù)的數(shù)列{an}的前n項和為Sn,且滿足:Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an+$\frac{1}{4}$(n∈N*
(Ⅰ)求an
(Ⅱ)設數(shù)列{$\frac{1}{a_n^2}$}的前n項和為Tn,證明:對一切正整數(shù)n,都有Tn<$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知球面上有四個點A、B、C、D,球心為點O,且點O在CD上,若三棱錐A-BCD體積的最大值為$\frac{8}{3}$,則球O的表面積為( 。
A.B.16πC.$\frac{16π}{3}$D.$\frac{32π}{3}$

查看答案和解析>>

同步練習冊答案