5.設(shè)函數(shù)y=f(x)在(a,b)上的導(dǎo)函數(shù)為f′(x),f′(x)在(a,b)上的導(dǎo)函數(shù)為f″(x),若在(a,b)上,f″(x)<0恒成立,則稱函數(shù)f(x)在(a,b)上為“凸函數(shù)”,已知f(x)=$\frac{1}{12}$x4-$\frac{1}{6}$mx3-$\frac{3}{2}$x2
(1)求f′(x)、f″(x);
(2)若f(x)為區(qū)間(-1,3)上的“凸函數(shù)”,試確定實(shí)數(shù)m的值;
(3)若當(dāng)實(shí)數(shù)m滿足|m|≤2時(shí),函數(shù)f(x)在(a,b)上總為“凸函數(shù)”,求b-a的最大值.

分析 (1)直接求導(dǎo),即可求f′(x)、f″(x);
(2)函數(shù)在區(qū)間(-1,3)上為“凸函數(shù)”,所以f″(x)<0,即對(duì)函數(shù)y=f(x)二次求導(dǎo),轉(zhuǎn)化為不等式問(wèn)題解決即可;
(3)利用函數(shù)總為“凸函數(shù)”,即f″(x)<0恒成立,轉(zhuǎn)化為不等式恒成立問(wèn)題,討論解不等式即可.

解答 解:(1)由函數(shù)f(x)=$\frac{1}{12}$x4-$\frac{1}{6}$mx3-$\frac{3}{2}$x2,得f′(x)=$\frac{1}{3}$x3-$\frac{1}{2}$mx2-3x,f″(x)=x2-mx-3(3分)
(2)若f(x)為區(qū)間(-1,3)上的“凸函數(shù)”,則有f″(x)=x2-mx-3<0在區(qū)間(-1,3)上恒成立,
由二次函數(shù)的圖象,當(dāng)且僅當(dāng)$\left\{\begin{array}{l}{f″(-1)=1+m-3≤0}\\{f″(3)=9-3m-3≤0}\end{array}\right.$,即m=2.(7分)
(3)當(dāng)|m|≤2時(shí),f″(x)=x2-mx-3<0恒成立?當(dāng)|m|≤2時(shí),mx>x2-3恒成立.(8分)
當(dāng)x=0時(shí),f″(x)=-3<0顯然成立.(9分)
當(dāng)x>0,x-$\frac{3}{x}$<m,
∵m的最小值是-2.∴x-$\frac{3}{x}$<-2.
從而解得0<x<1,(11分)
當(dāng)x<0,x-$\frac{3}{x}$>m,
∵m的最大值是2,∴x-$\frac{3}{x}$>2,
從而解得-1<x<0.(13分)
綜上可得-1<x<1,從而(b-a)max=1-(-1)=2(14分)

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)與不等式恒成立問(wèn)題的解法,關(guān)鍵是要理解題目所給信息(新定義),考查知識(shí)遷移與轉(zhuǎn)化能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=2lnx+$\frac{1}{x}$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果對(duì)所有的x≥1,都有f(x)≤ax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=xlnx-ax,g(x)=-x2-2.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對(duì)一切x∈(0,+∞),f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.過(guò)點(diǎn)A(-2,3)作拋物線:y2=4x的兩條切線l1,l2,設(shè)l1,l2與y軸分別交于點(diǎn)B,C,則△ABC的外接圓方程為(  )
A.x2+y2-3x-2y+1=0B.x2+y2-2x-3y+1=0C.x2+y2-3x-4=0D.x2+y2+x-3y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.7個(gè)人到7個(gè)地方去旅游,一人一個(gè)地方,甲不去A地,乙不去B地,丙不去C地,丁不去D地,共有多少種旅游方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在極坐標(biāo)系中,圓C的方程為ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$(t為參數(shù)).
(1)寫(xiě)出直線l的普通方程和圓C的直角坐方程;
(2)點(diǎn)P是圓C上任一點(diǎn),求點(diǎn)P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖所示的五個(gè)區(qū)域中,中心區(qū)域是一幅圖畫(huà),現(xiàn)要求在其余四個(gè)區(qū)域中涂色,有四種顏色可供選擇.要求每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域所涂顏色不同,則不同的涂色方法種數(shù)為( 。
A.84B.72C.64D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某三棱錐的正視圖和俯視圖如圖所示,則其左視圖面積為( 。
A.6B.$\frac{9}{2}$C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,跳傘塔CD高4,在塔頂測(cè)得地面上兩點(diǎn)A,B的俯角分別是30°,45°,又測(cè)得∠ADB=30°,求AB兩地的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案