6.直線l過點(diǎn)(0,2),被圓C:x2+y2-4x-6y+9=0截得的弦長(zhǎng)為2$\sqrt{3}$,則直線l的方程是( 。
A.y=$\frac{4}{3}$x+2B.y=-$\frac{1}{3}$x+2C.y=2D.y=$\frac{4}{3}$x+2或y=2

分析 求出圓的圓心與半徑,利用弦心距、半徑、半弦長(zhǎng)滿足勾股定理,求出所求直線的斜率,然后求出直線方程.

解答 解:圓C:x2+y2-4x-6y+9=0的圓心坐標(biāo)(2,3),半徑為2,
∵直線l過點(diǎn)(0,2),被圓C:x2+y2-4x-6y+9=0截得的弦長(zhǎng)為2$\sqrt{3}$,
∴圓心到所求直線的距離為:1,
設(shè)所求直線為:y=kx+2.即kx-y+2=0,
∴$\frac{|2k-1|}{\sqrt{{k}^{2}+1}}$=1,
解得k=0或$\frac{4}{3}$,
∴所求直線方程為y=$\frac{4}{3}$x+2或y=2.
故選:D.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,弦心距與半徑以及半弦長(zhǎng)的關(guān)系,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$\overrightarrow{m}$=(a,2),$\overrightarrow{n}$=(1,b-1),a>0,b>0,若$\overrightarrow{m}$,$\overrightarrow{n}$的夾角為$\frac{π}{2}$,則$\frac{1}{a}$+$\frac{2}$的最小值是( 。
A.無法確定B.3C.$\frac{5}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上題的已知條件,若要使織布的總尺數(shù)不少于30尺,該女子所需的天數(shù)至少為(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列各組函數(shù)中,f(x)與g(x)是同一函數(shù)的是( 。
A.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1B.f(x)=x,g(x)=2${\;}^{lo{g}_{2}x}$
C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=x,g(x)=$\sqrt{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.記$a=\frac{1}{e}-ln\frac{1}{e}$,$b=\frac{1}{2e}-ln\frac{1}{2e}$,$c=\frac{2}{e}-ln\frac{2}{e}$,其中e為自然對(duì)數(shù)的底數(shù),則a,b,c這三個(gè)數(shù)的大小關(guān)系是( 。
A.a>b>cB.a<b<cC.b>c>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題:“若a2+b2=0(a,b∈R),則a=0且b=0”的逆否命題是(  )
A.若a2+b2=0則a≠0且b≠0(a,b∈R)B.若a=b≠0(a,b∈R),則a2+b2≠0
C.若a≠0且b≠0(a,b∈R),則a2+b2≠0D.若a≠0或b≠0(a,b∈R),則a2+b2≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若θ是第四象限角,且|cos$\frac{θ}{2}$|=-cos$\frac{θ}{2}$,則$\frac{θ}{2}$是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,|$\overrightarrow{AB}$|=5,20a$\overrightarrow{BC}$+15b$\overrightarrow{CA}$+12c$\overrightarrow{AB}$=$\overrightarrow{0}$,$\overrightarrow{BP}$=2$\overrightarrow{PA}$,則$\overrightarrow{CP}$$•\overrightarrow{AB}$的值為( 。
A.$\frac{23}{3}$B.-$\frac{7}{2}$C.-$\frac{23}{3}$D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知正四棱錐的所有棱長(zhǎng)都相等,那么該四棱錐的內(nèi)切球與外接球的表面積之比為( 。
A.$\frac{1}{4}$B.$\frac{4}{9}$C.$\frac{\sqrt{3}-1}{2}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案