17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x<1}\\{{x}^{2}-4x+5,x≥1}\end{array}\right.$
(1)求f(0)+f(1)的值;
(2)求使得f(x)<5成立的x的取值范圍.

分析 (1)直接利用分段函數(shù)求出函數(shù)值即可.
(2)利用分段函數(shù)分別求解不等式的解集即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x<1}\\{{x}^{2}-4x+5,x≥1}\end{array}\right.$
(1)f(0)+f(1)=2-1+12-4×1+5=$\frac{5}{2}$;
(2)由f(x)<5,當(dāng)x<1時(shí),2x-1<5,解得:<log25+1,∴x成立的x的取值范圍x<1.
當(dāng)x≥1時(shí),x2-4x+5<5,解得1≤x≤4,
綜上x≤4.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,以及不等式的解法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,$∠BC{C_1}=\frac{π}{3}$.

(1)求證:C1B⊥平面ABC;
(2)求點(diǎn)B1到平面ACC1A1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,已知四棱錐P-ABCD,底面是邊長(zhǎng)為2的正方形,PA⊥底面ABCD,M、N分別為AD、BC的中點(diǎn),MQ⊥PD于Q,直線PC與平面PBA所成的角的正弦為$\frac{\sqrt{3}}{3}$.
(1)求PA的長(zhǎng);
(2)求二面角P-MN-Q的大;
(3)求點(diǎn)M到平面PNQ的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{xlnx}{x+a}$(a≠-1),曲線y=f(x)的點(diǎn)(1,f(1))處的切線與直線x-2y+3=0平行.
(1)若函數(shù)g(x)=f(x)•(x+1),求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若?x∈[1,+∞),f(x)≤m(x-1)恒成立,求實(shí)數(shù)m的取值范圍;
(3)求證:ln(2n+1)<$\frac{4×1}{4×{1}^{2}-1}$+$\frac{4×2}{4×{2}^{2}-1}$+…+$\frac{4×n}{4×{n}^{2}-1}$(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知a,b∈R,當(dāng)x>0時(shí),不等式ax+b≥lnx,則a+b的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在多面體ABCDEF中,正方形ADEF與梯形ABCD所在平面互相垂直,AB∥CD,AD⊥CD,AB=AD=1,CD=2,M、N分別為EC和BD的中點(diǎn).
(Ⅰ)求證:BC⊥平面BDE;
(Ⅱ)求直線MN與平面BMC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.?dāng)?shù)列{an}中,a1=3,$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{2}{3}$,則an=$\frac{3}{2n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)可導(dǎo),且x0∈(a,b),若f′(x0)=4,則$\underset{lim}{h→0}$$\frac{f({x}_{0})-f({x}_{0}-2h)}{h}$的值為( 。
A.2B.4C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在棱錐A-BCDE中,平面ABE上平面BCDE,BE⊥AE,BE⊥ED,ED∥BC,BC=BE=EA=2,DE=1.
(I)若F為AB中點(diǎn),求證:EF∥平面ADC;
(Ⅱ)若$\overrightarrow{AM}$=$\frac{5}{6}$$\overrightarrow{AC}$,求BM與平面ADC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案