【題目】已知點(diǎn)是拋物線的焦點(diǎn),是其準(zhǔn)線上任意一點(diǎn),過點(diǎn)作直線與拋物線相切,為切點(diǎn),軸分別交于,兩點(diǎn).

1)求焦點(diǎn)的坐標(biāo),并證明直線過點(diǎn);

2)求四邊形面積的最小值.

【答案】1,證明見解析;(23

【解析】

1)由點(diǎn)斜式設(shè)出直線的直線方程,再由上,得出直線的方程,從而證明直線過點(diǎn);

2)將直線的方程與拋物線方程聯(lián)立,結(jié)合韋達(dá)定理,拋物線的性質(zhì),點(diǎn)到直線的距離公式得出,再由四邊形的面積,結(jié)合導(dǎo)數(shù)得出四邊形面積的最小值.

1)由題意可知

設(shè),則

同理.

,,所以

所以直線過焦點(diǎn)F.

2)由(1)知,代入

AB的距離,所以

由(1)知,

所以,

則四邊形的面積

設(shè),

當(dāng)時,

即函數(shù)上是增函數(shù)

則四邊形面積的最小值為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知橢圓過點(diǎn),是兩個焦點(diǎn).以橢圓的上頂點(diǎn)為圓心作半徑為的圓,

1)求橢圓的方程;

2)存在過原點(diǎn)的直線,與圓分別交于,兩點(diǎn),與橢圓分別交于兩點(diǎn)(點(diǎn)在線段上),使得,求圓半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)過點(diǎn),離心率為.其左、右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn).直線l與以線段為直徑的圓相切,且直線l與橢圓C交于不同的A,B兩點(diǎn).

1)求橢圓C的方程;

2)若滿足,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個平面互相垂直,FBAEFB2EA.

1)證明:平面EFD⊥平面ABFE

2)求二面角EFDC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國際上通常用年齡中位數(shù)指標(biāo)作為劃分國家或地區(qū)人口年齡構(gòu)成的標(biāo)準(zhǔn):年齡中位數(shù)在20歲以下為年輕型人口;年齡中位數(shù)在2030歲為成年型人口;年齡中位數(shù)在30歲以上為老齡型人口.

如圖反映了我國全面放開二孩政策對我國人口年齡中位數(shù)的影響.據(jù)此,對我國人口年齡構(gòu)成的類型做出如下判斷:①建國以來直至2000年為成年型人口;②從2010年至2020年為老齡型人口;③放開二孩政策之后我國仍為老齡型人口.其中正確的是(

A.②③B.①③C.D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為上一點(diǎn).

(1)求橢圓的方程;

(2)設(shè)分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點(diǎn)的對稱點(diǎn),平行于的直線于異于的兩點(diǎn).點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為.證明:直線軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若不經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn),且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產(chǎn)企業(yè)加班加點(diǎn)生產(chǎn)口罩、防護(hù)服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應(yīng),在國際社會上贏得一片贊譽(yù).我國某口罩生產(chǎn)企業(yè)在加大生產(chǎn)的同時,狠抓質(zhì)量管理,不定時抽查口罩質(zhì)量,該企業(yè)質(zhì)檢人員從所生產(chǎn)的口罩中隨機(jī)抽取了100個,將其質(zhì)量指標(biāo)值分成以下六組:,,…,,得到如下頻率分布直方圖.

1)求出直方圖中的值;

2)利用樣本估計總體的思想,估計該企業(yè)所生產(chǎn)的口罩的質(zhì)量指標(biāo)值的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表,中位數(shù)精確到0.01);

3)現(xiàn)規(guī)定:質(zhì)量指標(biāo)值小于70的口罩為二等品,質(zhì)量指標(biāo)值不小于70的口罩為一等品.利用分層抽樣的方法從該企業(yè)所抽取的100個口罩中抽出5個口罩,并從中再隨機(jī)抽取2個作進(jìn)一步的質(zhì)量分析,試求這2個口罩中恰好有1個口罩為一等品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為實(shí)現(xiàn)有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結(jié)合某貧困村水質(zhì)優(yōu)良的特點(diǎn),決定利用扶貧資金從外地購買甲、乙、丙三種魚苗在魚塘中進(jìn)行養(yǎng)殖試驗,試驗后選擇其中一種進(jìn)行大面積養(yǎng)殖,已知魚苗甲的自然成活率為0.8.魚苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚苗是否成活相互獨(dú)立.

1)試驗時從甲、乙,丙三種魚苗中各取一尾,記自然成活的尾數(shù)為,求的分布列和數(shù)學(xué)期望;

2)試驗后發(fā)現(xiàn)乙種魚苗較好,扶貧工作組決定購買尾乙種魚苗進(jìn)行大面積養(yǎng)殖,為提高魚苗的成活率,工作組采取增氧措施,該措施實(shí)施對能夠自然成活的魚苗不產(chǎn)生影響.使不能自然成活的魚苗的成活率提高了50%.若每尾乙種魚苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標(biāo)是獲利不低于37.6萬元,問需至少購買多少尾乙種魚苗?

查看答案和解析>>

同步練習(xí)冊答案