14.函數(shù)$y=\sqrt{3-x}$的定義域?yàn)椋?∞,3].

分析 根據(jù)二次根式被開方數(shù)大于或等于0,列出不等式求出解集即可.

解答 解:函數(shù)$y=\sqrt{3-x}$,
∴3-x≥0,
解得x≤3,
∴函數(shù)y的定義域是(-∞,3].
故答案為:(-∞,3]

點(diǎn)評 本題考查了求函數(shù)定義域的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.實(shí)驗(yàn)測得五組(x,y)的值是(1,2)(2,4)(3,4)(4,7)(5,8),若線性回歸方程為$\stackrel{∧}{y}$=0.7x+$\stackrel{∧}{a}$,則$\stackrel{∧}{a}$的值是( 。
A.1.4B.1.9C.2.2D.2.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某四面體的三視圖如圖所示,正視圖、俯視圖都是腰長為2的等腰直角三角形,側(cè)視圖是邊長為2的正方形,則此四面體的四個(gè)面中面積的最大值為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.從集合{$\frac{1}{2}$,$\frac{1}{3}$,2,3}中任取一個(gè)數(shù)記做a,從集合{-2,-1,1,2}中任取一個(gè)數(shù)記做b,則函數(shù)y=ax+b的圖象經(jīng)過第三象限的概率是$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若存在常數(shù)k(k∈N*,k≥2)、d、t(d,t∈R),使得無窮數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{{a}_{n}+d,\frac{n}{k}{∉N}^{*}}\\{{ta}_{n},\frac{n}{k}{∈N}^{*}}\end{array}\right.$,則稱數(shù)列{an}為“段差比數(shù)列”,其中常數(shù)k、d、t分別叫做段長、段差、段比,設(shè)數(shù)列{bn}為“段差比數(shù)列”.
(1)已知{bn}的首項(xiàng)、段長、段差、段比分別為1、2、d、t,若{bn}是等比數(shù)列,求d、t的值;
(2)已知{bn}的首項(xiàng)、段長、段差、段比分別為1、3、3、1,其前3n項(xiàng)和為S3n,若不等式${S}_{3n}≤λ{(lán)•3}^{n-1}$對n∈N*恒成立,求實(shí)數(shù)λ的取值范圍;
(3)是否存在首項(xiàng)為b,段差為d(d≠0)的“段差比數(shù)列”{bn},對任意正整數(shù)n都有bn+6=bn.若存在,寫出所有滿足條件的{bn}的段長k和段比t組成的有序數(shù)組(k,t);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x),定義$F(f(x))=\left\{\begin{array}{l}1,x<f(x)\\ 0,x=f(x)\\-1,x>f(x).\end{array}\right.$
(Ⅰ)寫出函數(shù)F(2x-1)的解析式;
(Ⅱ)若F(|x-a|)+F(2x-1)=0,求實(shí)數(shù)a的值;
(Ⅲ)當(dāng)$x∈[\frac{π}{3},\frac{4}{3}π]$時(shí),求h(x)=cosx•F(x+sinx)的零點(diǎn)個(gè)數(shù)和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.為了得到函數(shù)$y=sin(2x+\frac{π}{3})$的圖象,只需將函數(shù)y=sin2x的圖象上每一點(diǎn)( 。
A.向左平移$\frac{π}{3}$個(gè)單位長度B.向左平移$\frac{π}{6}$個(gè)單位長度
C.向右平移$\frac{π}{3}$個(gè)單位長度D.向右平移$\frac{π}{6}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中為奇函數(shù)的是( 。
A.y=xcosxB.y=xsinxC.y=|1nx|D.y=2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的周期為π,若f(α)=1,則$f(α+\frac{3π}{2})$=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

同步練習(xí)冊答案