A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 4 |
分析 設(shè)$\overrightarrow{BM}$=t$\overrightarrow{BC}$,將$\overrightarrow{AN}$用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示出來(lái),即可找到λ和μ的關(guān)系,從而求出λ+μ的值.
解答 解:設(shè)$\overrightarrow{BM}$=t$\overrightarrow{BC}$(0≤t≤1),$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,
所以$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{AM}$=$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{BM}$)
=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$t$\overrightarrow{BC}$
=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$t($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=($\frac{1}{4}$-$\frac{1}{4}$t)$\overrightarrow{AB}$+$\frac{1}{4}$t$\overrightarrow{AC}$,
又$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,
所以λ+μ=($\frac{1}{4}$-$\frac{1}{4}$t)+$\frac{1}{4}$t=$\frac{1}{4}$.
故選:A.
點(diǎn)評(píng) 本題主要考查了平面向量的基本定理,即平面內(nèi)任一向量都可由兩不共線的向量唯一表示出來(lái).屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 75 | B. | 85 | C. | 100 | D. | 110 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com