A. | (-∞,-$\frac{1}{4}$) | B. | (-$\frac{1}{4}$,+∞) | C. | (-∞,-$\frac{1}{2}$) | D. | (0,+∞) |
分析 本題要根據(jù)題設(shè)中所給的條件解出f(x)的底數(shù)a的值,由x∈($\frac{1}{2}$,1),得2x2+x∈(1,3),至此可由恒有f(x)<0,得出底數(shù)a的取值范圍,再利用復(fù)合函數(shù)單調(diào)性求出其單調(diào)區(qū)間即可.
解答 解:函數(shù)f(x)=loga(2x2+x)(a>0,a≠1)在區(qū)間($\frac{1}{2}$,1)恒有f(x)<0,
由于x∈($\frac{1}{2}$,1),得2x2+x∈(1,3),又在區(qū)間($\frac{1}{2}$,1)恒有f(x)<0,故有a∈(0,1)
對(duì)復(fù)合函數(shù)的形式進(jìn)行,結(jié)合復(fù)合函數(shù)的單調(diào)性的判斷規(guī)則知,
由t=2x2+x>0得:(-∞,-$\frac{1}{2}$)∪(0,+∞),
由y=logat為減函數(shù),t=2x2+x在(-∞,-$\frac{1}{2}$)上為減函數(shù),
函數(shù)的單調(diào)遞增區(qū)間為(-∞,-$\frac{1}{2}$)
故選:C
點(diǎn)評(píng) 本題考查用復(fù)合函數(shù)的單調(diào)性求單調(diào)區(qū)間,在本題中正確將題設(shè)中所給的條件進(jìn)行正確轉(zhuǎn)化得出底數(shù)的范圍,解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{π}{6}$] | B. | (0,$\frac{π}{3}$) | C. | (0,$\frac{π}{2}$) | D. | ($\frac{π}{6}$,$\frac{π}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{kπ}{2}$,0),k∈Z | B. | (kπ,0),k∈Z | C. | (k$π-\frac{π}{4}$,0),k∈Z | D. | ($\frac{kπ}{2}$-$\frac{π}{4}$,0),k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 原點(diǎn) | B. | y軸 | C. | x軸 | D. | 直線y=x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
自然狀況 | 方案 盈利(萬元) 概率 | A1 | A2 | A3 | A4 |
S1 | 0.25 | 50 | 70 | -20 | 98 |
S2 | 0.30 | 65 | 26 | 52 | 82 |
S3 | 0.45 | 26 | 16 | 78 | -10 |
A. | A1 | B. | A2 | C. | A3 | D. | A4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com