9.已知(2x-1)(ax+2)5展開式中,不含x4項,且a≠0,則a=8.

分析 先求出(ax+2)5展開式中含x3項與含x4項的系數(shù),再求(2x-1)(ax+2)5展開式中x4項的系數(shù),令其等于0,即可求出a的值.

解答 解:(ax+2)5展開式中,通項公式為Tr+1=${C}_{5}^{r}$•(ax)5-r•2r;
令5-r=3,解得r=2,
∴T3=4${C}_{5}^{2}$•a3•x3;
令5-r=4,解得r=1,
∴T2=2${C}_{5}^{1}$•a4•x4;
∴(2x-1)(ax+2)5展開式中,x4項的系數(shù)為:
2×4${C}_{5}^{2}$•a3-1×2${C}_{5}^{1}$•a4=0,
又a≠0,解得a=8.
故答案為:8.

點評 本題考查了利用二項式展開式的通項公式求特定項的系數(shù)問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖是某班8位學(xué)生詩詞比賽得分的莖葉圖,那么這8位學(xué)生得分的眾數(shù)和中位數(shù)分別為93、92.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\overrightarrow{a}$=(2,-4),$\overrightarrow$=(6,x),若|$\overrightarrow{a}+\overrightarrow$|=|$\overrightarrow{a}-\overrightarrow$|,則x=( 。
A.3B.-3C.12D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)直角坐標(biāo)平面內(nèi)與兩個定點A(-2,0),B(2,0)的距離之差的絕對值等于2的點的軌跡是E,C是軌跡E上一點,直線BC垂直于x軸,則$\overrightarrow{AC}$$•\overrightarrow{BC}$=( 。
A.-9B.-3C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知向量$\overrightarrow{m}$=($\frac{3}{2}$,-sinx),$\overrightarrow{n}$=(1,sinx+$\sqrt{3}$cosx),x∈R,函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(I)求f(x)的最小正周期及值域;
(2)已知△ABC中,角A、B、C的對邊分別為a,b,c,若f(A)=0,a=$\sqrt{3}$,bc=2,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z=$\frac{\sqrt{3}+i}{(1+i)^{2}}$,其中i為虛數(shù)單位,則|z|=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若復(fù)數(shù)z=(3+bi)(1+i)-2是純虛數(shù)(b∈R),則|z|=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若下列三個方程2x+x=0、log2x+x=0、x=1+x${\;}^{-\frac{1}{2}}$的根依次為a、b、c,則a、b、c的大小是c>b>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知μ(x)表示不小于x的最小整數(shù),例如μ(0.2)=1.
(1)設(shè)A={x|μ(x+log2x)>m},B=($\frac{1}{2}$,2),若A∩B≠∅,求實數(shù)m的取值范圍;
(2)設(shè)g(x)=μ(xμ(x)),g(x)在區(qū)間(0,n)(n∈N+)上的值域為Mn,集合Mn中的元素個數(shù)為an,求證:${\;}_{n→+∞}^{lim}$$\frac{{a}_{n}}{{n}^{2}+1}=\frac{1}{2}$;
(3)設(shè)g(x)=x+a$•\frac{μ(x)}{x}-2(a>0)$,h(x)=$\frac{sinπx+2}{{x}^{2}-5x+7}$,若對于x1,x2(2,4],都有g(shù)(x1)>h(x2),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案