12.設α、β$∈(\frac{π}{2},π)$,且sinαcos(α+β)=sinβ,則tanβ的最小值是$-\frac{\sqrt{2}}{4}$.

分析 由條件利用兩角和差的正弦公式、同角三角函數(shù)的基本關系可得 2tan2α•tanβ+tanβ-tanα=0,再根據△=1-8tan≥0,求得tanβ的最小值.

解答 解:∵sinαcos(α+β)=sinβ=sin[(α+β)-α],
∴sinαcos(α+β)=sin(α+β)cosα-cos(α+β)sinα,
化簡可得 tan(α+β)=2tanα,即 $\frac{tanα+tanβ}{1-tanα•tanβ}$=2tanα,
∴2tan2α•tanβ-tanα+tanβ=0,
∴△=1-8tan2β≥0,
解得-$\frac{\sqrt{2}}{4}$≤tanβ≤$\frac{\sqrt{2}}{4}$,
∵β∈($\frac{π}{2}$,π),∴-$\frac{\sqrt{2}}{4}$≤tanβ<0,
故答案為:-$\frac{\sqrt{2}}{4}$.

點評 本題主要考查兩角和差的正弦公式,同角三角函數(shù)的基本關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ax3+x2+bx (其中常數(shù)a,b∈R),g(x)=f(x)+f′(x)是奇函數(shù).
(1)求f(x)的表達式;
(2)求g(x)在區(qū)間[1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,E是PC的中點.
(1)證明:PA∥平面EDB;
(2)證明:平面PAC⊥平面PDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設m,n,l為空間不重合的直線,α,β,γ是空間不重合的平面,則下列說法準確的個數(shù)是(  )
①m∥l,n∥l,則m∥n;②m⊥l,n⊥l,則m∥n;③若m∥l,m∥α,則l∥α; ④若l∥m,l?α,m?β,則α∥β;⑤若m?α,m∥β,l?β,l∥α,則α∥β⑥α∥γ,β∥γ,則α∥β.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在棱長為a的正方體ABCD-A1B1C1D1中,求A到平面A1BD的距離d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在棱長為$\sqrt{6}$的正方體ABCD-A1B1C1D1中,D1到B1C的距離為( 。
A.$\sqrt{6}$B.2$\sqrt{3}$C.3$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.下列說法中:
①兩條直線都和同一個平面平行,則這兩條直線平行;
②在平行投影下,與投影面平行的平面圖形留下的影子,與這個平面圖形的形狀和大小完全相同;
③一個圓繞其任意一條直徑旋轉180°所形成的旋轉體叫做球;
④a∥b,b?α⇒a∥α;
⑤已知三條兩兩異面的直線,則存在無窮多條直線與它們都相交.
則正確的序號是②⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.有一個三棱錐與一個四棱錐,棱長都相等,它們的一個側面重疊后,還有暴露面的個數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.點F為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點,以F為圓心的圓過坐標原點O,且與雙曲線C的兩漸近線分別交于A、B兩點,若四邊形OAFB是菱形,則雙曲線C的離心率為2.

查看答案和解析>>

同步練習冊答案