11.復數(shù)z=i(3-i)的共軛復數(shù)的虛部是( 。
A.-3iB.-3C.$\sqrt{10}$D.-1

分析 利用復數(shù)的運算法則、共軛復數(shù)的定義、虛部的定義即可得出.

解答 解:復數(shù)z=i(3-i)=3i+1的共軛復數(shù)$\overline{z}$=1-3i的虛部為-3.
故選:B.

點評 本題考查了復數(shù)的運算法則、共軛復數(shù)的定義、虛部的定義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=|x|-1,又g(x)=$\left\{\begin{array}{l}{f(x),x≤1}\\{\frac{lnx}{x},x>1}\end{array}\right.$,若函數(shù)F(x)=g(x)-kx在區(qū)間[-7,+∞)上恰有7個零點,則實數(shù)k的取值范圍為( 。
A.($\frac{1}{6}$,$\frac{1}{4}$)B.($\frac{1}{6}$,$\frac{1}{2e}$)C.($\frac{1}{8}$,$\frac{1}{2e}$)D.($\frac{1}{2e}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點F與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點重合,拋物線C的準線l與x軸的交點為M,過點M且斜率為k的直線l1交拋物線C于A,B兩點,線段AB的中點為P,直線PF與拋物線C交于D,E兩點
(Ⅰ)求拋物線C的方程;
(Ⅱ)若λ=$\frac{|MA|•|MB|}{|FD|•|FE|}$,寫出λ關于k的函數(shù)解析式,并求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.數(shù)列{an}滿足a1=1,an+1=$\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$(n∈N*
(1)證明:數(shù)列{$\frac{2^n}{a_n}$}是等差數(shù)列;
(2)設bn=$\frac{{{2^{n+1}}}}{a_n}$+3,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0)的焦點為F,其準線與x軸相交于點M,過焦點F且斜率為1的直線與拋物線相交所得弦的中點的縱坐標為2.已知直線l:x=my+$\frac{p}{2}$與拋物線C交于A,B兩點,且$\overrightarrow{AF}$=λ$\overrightarrow{FB}$(1≤λ≤3).
(1)求拋物線C的方程;
(2)求$\overrightarrow{MA}$2+$\overrightarrow{MB}$2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n為奇數(shù)}\\{{a}_{n}-3n,n為偶數(shù)}\end{array}\right.$
(1)求a2,a3,a4的值;
(2)求證:數(shù)列{a2n-$\frac{3}{2}$}是等比數(shù)列;
(3)求數(shù)列{an}的前n項和Sn,并求滿足Sn>0的所有正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在△ABC中,角A,B,C對邊分別是a,b,c.已知a=3,c=2,cosB=$\frac{1}{4}$.
(Ⅰ)求sinA;
(Ⅱ)設f(x)=bsin2x+$\sqrt{30}$sinxcosx(x∈R),求f(x)的最小正周期和對稱軸的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.(lg2)2+lg2•lg50+lg25+eln3=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.工人月工資y(元)依勞動生產率x(千元)變化的回歸方程為$\widehat{y}$=50+60x,下列判斷正確的是( 。
A.勞動生產率為1 000元時,工資為110元
B.勞動生產率提高1 000元,則工資提高60元
C.勞動生產率提高1 000元,則工資提高110元
D.當月工資為210元時,勞動生產率為1 500元

查看答案和解析>>

同步練習冊答案