【題目】如圖,已知在四棱錐中,底面,,,,,點為棱的中點,
(1)試在棱上確定一點,使平面平面,說明理由;
(2)若為棱上一點,滿足,求二面角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市名男生的身高服從正態(tài)分布.現(xiàn)從某學校高三年級男生中隨機抽取名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于和之間,將測量結(jié)果按如下方式分組: , ,…, ,得到的頻率分布直方圖如圖所示.
(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這名男生身高在以上(含)的人數(shù);
(Ⅲ)在這名男生身高在以上(含)的人中任意抽取人,該人中身高排名(從高到低)在全市前名的人數(shù)記力,求的數(shù)學期望.
參考數(shù)據(jù):若,則,
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()有極小值.
(1)求實數(shù)的取值范圍;
(2)若函數(shù)在時有唯一零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年秋季,我省高一年級全面實行新高考政策,為了調(diào)查學生對新政策的了解情況,準備從某校高一三個班級抽取10名學生參加調(diào)查.已知三個班級學生人數(shù)分別為40人,30人,30人.考慮使用簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡單隨機抽樣和分層抽樣時,將學生按三個班級依次統(tǒng)一編號為1,2,…,100;使用系統(tǒng)抽樣,將學生統(tǒng)一編號為1,2,…,100,并將整個編號依次分為10段.如果抽得的號碼有下列四種情況:
①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;
③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.
關(guān)于上述樣本的下列結(jié)論中,正確的是( )
A. ①③都可能為分層抽樣 B. ②④都不能為分層抽樣
C. ①④都可能為系統(tǒng)抽樣 D. ②③都不能為系統(tǒng)抽樣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調(diào)查機構(gòu)對本市小學生課業(yè)負擔情況進行了調(diào)查,設(shè)平均每人每天做作業(yè)的時間為分鐘,有1200名小學生參加了此項調(diào)查,調(diào)查所得到的數(shù)據(jù)用程序框圖處理(如圖),若輸出的結(jié)果是840,若用樣本頻率估計概率,則平均每天做作業(yè)的時間在0~60分鐘內(nèi)的學生的概率是( )
A. 0.32 B. 0.36 C. 0.7 D. 0.84
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O:,直線l:.
若直線l與圓O交于不同的兩點A,B,當時,求實數(shù)k的值;
若,P是直線上的動點,過P作圓O的兩條切線PC、PD,切點分別為C、D,試探究:直線CD是否過定點若存在,請求出定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題函數(shù)在上單調(diào)遞減;命題曲線為雙曲線.
(Ⅰ)若“且”為真命題,求實數(shù)的取值范圍;
(Ⅱ)若“或”為真命題,“且”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中為常量,且)的圖像經(jīng)過點.
(1)求的值;
(2)當時,函數(shù)的圖像恒在函數(shù)圖像的上方,求實數(shù)的取值范圍;
(3)是否存在實數(shù),使得函數(shù)的定義域為,值域為?若存在,求出的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知底面為正方形的四棱錐,各側(cè)棱長都為,底面面積為16,以為球心,2為半徑作一個球,則這個球與四棱錐相交部分的體積是( )
A. B. C. D.
【答案】C
【解析】構(gòu)造棱長為4的正方體,四棱錐O-ABCD的頂點O為正方體的中心,底面與正方體的一個底面重合.可知所求體積是正方體內(nèi)切球體積的,所以這個球與四棱錐O-ABCD相交部分的體積是: .
本題選擇C選項.
點睛:與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,求幾何體的體積,要注意分割與補形.將不規(guī)則的幾何體通過分割或補形將其轉(zhuǎn)化為規(guī)則的幾何體求解.
【題型】單選題
【結(jié)束】
13
【題目】若,為第二象限角,則__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com