6.為了考查兩個(gè)變量x和y之間的線性關(guān)系,甲乙二人各自獨(dú)立地作了10次和15次試驗(yàn),并且利用線性回歸方法求得回歸直線分別為l1和l2,已知甲乙得到的試驗(yàn)數(shù)據(jù)中,變量x的平均值都是s,變量y的平均值都是t,則下面說法正確的是( 。
A.直線l1和l2必定重合
B.直線l1和l2一定有公共點(diǎn)(s,t)
C.直線l1∥l2
D.直線l1和l2相交,但交點(diǎn)不一定是(s,t)

分析 根據(jù)兩組數(shù)據(jù)的變量x和y的數(shù)據(jù)的平均值都相等,且分別都是s、t,可以知道兩組數(shù)據(jù)的樣本中心點(diǎn)相同,根據(jù)線性回歸直線一定過樣本中心點(diǎn),得到兩條直線都過一個(gè)點(diǎn)(s,t).

解答 解:∵變量x和y的數(shù)據(jù)的平均值都相等且分別都是s、t,
∴(s,t)一定在回歸直線上.
∴直線l1和l2一定有公共點(diǎn)(s,t).
故選B.

點(diǎn)評 本題考查線性回歸方程,考查兩組數(shù)據(jù)的特點(diǎn),考查線性回歸直線一定過樣本中心點(diǎn),考查兩條直線的關(guān)系,本題是一個(gè)基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.以邊長為4的等比三角形ABC的頂點(diǎn)A以及BC邊的中點(diǎn)D為左、右焦點(diǎn)的橢圓過B,C兩點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)D且x軸不垂直的直線l交橢圓于M,N兩點(diǎn),求證直線BM與CN的交點(diǎn)在一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=$\frac{x}{1+x}$,
(1)求f(x)+f($\frac{1}{x}$)的值;
(2)求f(1)+f(2)+…+f(7)+f(1)+f($\frac{1}{2}$)+…+f($\frac{1}{7}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等比數(shù)列{an}的公比為q,且|q|≠1,a1=-1,若am=a1•a2•a3•a4•a5,則m等于( 。
A.12B.11C.10D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax 2+a 2x+2b-a 3,當(dāng)x∈(-2,6)時(shí),f(x)>0,當(dāng)x∈(-∞,-2)∪(6,+∞)時(shí),f(x)<0,
(1)求f(x)的解析式.
(2)求f(x)在區(qū)間[1,10]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若2x+2y=1,則x+y的取值范圍是( 。
A.[0,2]B.[-2,0]C.(-∞,-2]D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若直線l:$\frac{x}{a}$+$\frac{y}$=1(a>0,b>0)過點(diǎn)A(1,2),則a+8b的最小值為( 。
A.34B.27C.25D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(1+x)2-2ln(1+x)若函數(shù)g(x)=f(x)-x2-x-a在區(qū)間[0,2]上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x3-3x2-3x+2.
(1)點(diǎn)M(-1,f(-1))處的切線方程;
(2)討論函數(shù)y=f(x)的單調(diào)區(qū)間,并求函數(shù)y=f(x)的極值.

查看答案和解析>>

同步練習(xí)冊答案