17.若隨機(jī)變量X~N(μ,σ2)(σ>0),則下列如下結(jié)論:
P(μ-σ<X≤μ+σ)=0.6826,
P(μ-2σ<X≤μ+2σ)=0.9544,
P(μ-3σ<X≤μ+3σ)=0.9974,
某班有48名同學(xué),一次數(shù)學(xué)考試的成績服從正態(tài)分布,平均分為80,標(biāo)準(zhǔn)差為10,理論上說在80分到90分的人數(shù)均為( 。
A.32B.16C.8D.24

分析 正態(tài)總體的取值關(guān)于x=80對稱,位于70分到90分之間的概率是0.6826,位于80分到90分之間的概率是位于70分到90分之間的概率的一半,得到要求的結(jié)果.

解答 解:∵數(shù)學(xué)成績近似地服從正態(tài)分布N(80,102),
P(|x-u|<σ)=0.6826,
∴P(|x-80|<10)=0.6826,
根據(jù)正態(tài)曲線的對稱性知:
位于80分到90分之間的概率是位于70分到90分之間的概率的一半
∴理論上說在80分到90分的人數(shù)是$\frac{1}{2}$(0.6826)×48≈16.
故選:B.

點(diǎn)評 一個(gè)隨機(jī)變量如果是眾多的、互不相干的、不分主次的偶然因素作用結(jié)果之和,它就服從或近似的服從正態(tài)分布,正態(tài)分布在概率和統(tǒng)計(jì)中具有重要地位且滿足3σ原則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知雙曲線一條漸進(jìn)線的傾斜角為$\frac{π}{3}$,兩準(zhǔn)線x=±$\frac{{a}^{2}}{c}$間的距離為1,求雙曲線標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,已知PA是圓O的切線,切點(diǎn)為A,直線PO交圓O于B,C兩點(diǎn),AC=1,∠BAP=120°,則圓O的面積為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在等差數(shù)列{an}中,Sn為其前n項(xiàng)的和,若a3+a8=29,S3=12,則通項(xiàng)公式an=3n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an+1+an}的前n項(xiàng)和Sn=2n+1-2,a1=0.
(1)求數(shù)列{an+1+an}的通項(xiàng)公式;
(2)求a2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=cos(ωx+φ)(ω>0,π<φ<2π)為奇函數(shù),且圖象上相鄰的一個(gè)最高點(diǎn)和一個(gè)最低點(diǎn)之間的距離為$\sqrt{4+{π}^{2}}$.
(1)求函數(shù)f(x)的解析式;
(2)若f(α)=$\frac{3}{5}$,α為第二象限角,求tan(α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知一個(gè)正三棱柱,一個(gè)體積為$\frac{4π}{3}$的球體與棱柱的所有面均相切,那么這個(gè)正三棱柱的表面積是$18\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1-x}{{1+a{x^2}}}$,其中a∈R.
(Ⅰ)當(dāng)a=-$\frac{1}{4}$時(shí),求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),證明:存在實(shí)數(shù)m>0,使得對任意的x,都有-m≤f(x)≤m成立;
(Ⅲ)當(dāng)a=2時(shí),是否存在實(shí)數(shù)k,使得關(guān)于x的方程f(x)=k(x-a)僅有負(fù)實(shí)數(shù)解?當(dāng)a=-$\frac{1}{2}$時(shí)的情形又如何?(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=$\frac{{e}^{x}}{{x}^{2}}-k(\frac{2}{x}+lnx)$(k為常數(shù),e是自然對數(shù)的底數(shù)).
(1)當(dāng)k≤0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0,2)內(nèi)存在兩個(gè)極值點(diǎn),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案