8.如圖,已知PA是圓O的切線,切點為A,直線PO交圓O于B,C兩點,AC=1,∠BAP=120°,則圓O的面積為π.

分析 由已知中,已知PA是圓O的切線,切點為A,直線PO交圓O于B,C兩點,AC=2,∠PAB=120°,我們根據(jù)切線的性質(zhì),等腰三角形兩底角相待,直徑所對圓周角為直角,30°所對的直角邊等于斜邊的一半,求出圓的半徑,代入圓面積公式,即可得到答案.

解答 解:∵PA是圓O的切線,
∴OA⊥AP.
又∵∠PAB=120°,
∴∠BAO=∠ABO=30°.
又∵在Rt△ABC中,AC=1,
∴BC=2,即圓O的直徑2R=2,
∴圓O的面積S=πR2=π,
故答案為:π.

點評 本題考查的知識點是切線的性質(zhì),圓周角定理,其中根據(jù)已知條件,求出圓的半徑是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.直線y=x與曲線C:$\left\{{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}}$(θ為參數(shù),π≤θ≤2π)的交點坐標(biāo)是$(-\frac{12}{5},-\frac{12}{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知a>0,b>0,ab=a+b+3,求:
(1)ab的最小值;
(2)a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}(n∈N*,1≤n≤46)滿足a1=a,an+1-an=$\left\{{\begin{array}{l}{d,1≤n≤15}\\{1,16≤n≤30}\\{\frac{1}4k7dmzm,31≤n≤45}\end{array}}$其中d≠0,n∈N*
(1)當(dāng)a=1時,求a46關(guān)于d的表達(dá)式,并求a46的取值范圍;
(2)設(shè)集合M={b|b=ai+aj+ak,i,j,k∈N*,1≤i<j<k≤16}.若a=$\frac{1}{3}$,d=$\frac{1}{4}$,求證:2∈M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某個幾何體的三視圖如圖所示,則這個幾何體最長的棱長為(  )
A.$\sqrt{14}$B.$\sqrt{13}$C.$\sqrt{10}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等比數(shù)列{an+2}的公比q=2,a1=1,數(shù)列{bn}滿足:$\frac{b_n}{{{a_{n+1}}}}=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}$(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明:$\frac{{{b_{n+1}}}}{{{a_{n+2}}}}=\frac{{1+{b_n}}}{{{a_{n+1}}}}$;
(Ⅲ)求證:$(1+\frac{1}{b_1})(1+\frac{1}{b_2})…(1+\frac{1}{b_n})<\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知點A(0,0),B(2,0),C(2,-3),D(3,1),則在不等式3x-y-6≥0表示的平面區(qū)域內(nèi)的點是B,C,D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若隨機變量X~N(μ,σ2)(σ>0),則下列如下結(jié)論:
P(μ-σ<X≤μ+σ)=0.6826,
P(μ-2σ<X≤μ+2σ)=0.9544,
P(μ-3σ<X≤μ+3σ)=0.9974,
某班有48名同學(xué),一次數(shù)學(xué)考試的成績服從正態(tài)分布,平均分為80,標(biāo)準(zhǔn)差為10,理論上說在80分到90分的人數(shù)均為(  )
A.32B.16C.8D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)α為銳角,若cosα=$\frac{4}{5}$,則sin2α的值為( 。
A.$\frac{12}{25}$B.$\frac{24}{25}$C.$-\frac{24}{25}$D.$-\frac{12}{25}$

查看答案和解析>>

同步練習(xí)冊答案