2.已知平面三角形和空間四面體有很多相似的性質(zhì),請(qǐng)你類(lèi)比三角形的面積公式S=$\frac{1}{2}$(a+b+c)r(其中a、b、c是三角形的三條邊,r是三角形內(nèi)切圓的半徑),寫(xiě)出一個(gè)關(guān)于四面體的與之類(lèi)似的結(jié)論V=$\frac{1}{3}$(S1+S2+S3+S4)r.

分析 根據(jù)平面與空間之間的類(lèi)比推理,由點(diǎn)類(lèi)比點(diǎn)或直線,由直線 類(lèi)比 直線或平面,由內(nèi)切圓類(lèi)比內(nèi)切球,由平面圖形面積類(lèi)比立體圖形的體積,結(jié)合求三角形的面積的方法類(lèi)比求四面體的體積即可.

解答 解:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是r,
根據(jù)三角形的面積的求解方法:分割法,將O與四頂點(diǎn)連起來(lái),可得四面體的體積等于以O(shè)為頂點(diǎn),分別以四個(gè)面為底面的4個(gè)三棱錐體積的和,
∴V=$\frac{1}{3}$(S1+S2+S3+S4)r,
故答案為:V=$\frac{1}{3}$(S1+S2+S3+S4)r.

點(diǎn)評(píng) 類(lèi)比推理是指依據(jù)兩類(lèi)數(shù)學(xué)對(duì)象的相似性,將已知的一類(lèi)數(shù)學(xué)對(duì)象的性質(zhì)類(lèi)比遷移到另一類(lèi)數(shù)學(xué)對(duì)象上去.一般步驟:①找出兩類(lèi)事物之間的相似性或者一致性.②用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(或猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:函數(shù)f(x)=cx2-x+c在區(qū)間$[{\frac{1}{2},2}]$上恒大于零.若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知a>0,且二項(xiàng)式${(a\sqrt{x}-\frac{1}{{\sqrt{x}}})^6}$展開(kāi)式中含$\frac{1}{x}$項(xiàng)的系數(shù)是135,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x|-1<x<1},B={x|x2≤2x},則∁R(A∩B)等于( 。
A.[0,+∞)B.[-1,1)C.(-∞,0)∪[1,+∞)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)函數(shù)$f(x)=ax+\frac{1+(x-1)}{x-1}$,若a是從1,2,3三個(gè)數(shù)中任取的一個(gè)數(shù),b是從2,3,4,5四個(gè)數(shù)中任取的一個(gè)數(shù),則f(x)>b恒成立的概率為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)是定義域?yàn)镽上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2x.
(1)求f(x)的解析式;
(2)若不等式f(t-2)+f(2t+1)>0成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.曲線y=-5ex+4在點(diǎn)(0,-1)處的切線方程為y=-5x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.甲決定在某日0時(shí)至24時(shí)內(nèi)隨機(jī)向某網(wǎng)站發(fā)布一則信息,該網(wǎng)站將這則信息保留4小時(shí),乙在這一天0時(shí)至24時(shí)內(nèi)隨機(jī)到此網(wǎng)站的同一網(wǎng)頁(yè)瀏覽2小時(shí),則乙能看到甲發(fā)布信息的概率為$\frac{43}{144}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=x3+mx2+nx+1(m,n∈R)在區(qū)間[1,2]上單調(diào)遞增,則3m+n的最小值為-$\frac{15}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案