已知函數(shù)f(x)=
1
2
ax2-2x+2+lnx,a∈R.
(1)當(dāng)a=0時(shí),求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在(1,﹢∞)上只有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)當(dāng)a=0時(shí),f(x)=-2x+2+lnx,則令f′(x)=
1
x
-2=
1-2x
x
>0,由此能求出f(x)的單調(diào)增區(qū)間.
(2)令f′(x)=ax-2+
1
x
=
ax2-2x+1
x
=0,f(x)在(1,+∞)上只有一個(gè)極值點(diǎn),故f′(x)=0在(1,+∞)上只有一個(gè)根且不是重根.令g(x)=ax2-2x+1,x∈(1,+∞).進(jìn)行分類討論能求出實(shí)數(shù)a的取值范圍.
解答: 解:(1)當(dāng)a=0時(shí),f(x)=-2x+2+lnx,
令f′(x)=
1
x
-2=
1-2x
x
>0,
解得0<x<
1
2

∴f(x)的單調(diào)增區(qū)間是(0,
1
2
).
(2)∵令f′(x)=ax-2+
1
x
=
ax2-2x+1
x
=0,
f(x)在(1,+∞)上只有一個(gè)極值點(diǎn),
∴f′(x)=0在(1,+∞)上只有一個(gè)根且不是重根.
令g(x)=ax2-2x+1,x∈(1,+∞).
①當(dāng)a=0時(shí),g(x)=-2x+1,不在(1,+∞)上有一個(gè)根,舍去.
②當(dāng)a>0時(shí),g(x)=ax2-2x+1,在(1,+∞)上只有一個(gè)根,且不是重根,
∴g(1)<0,∴0<a<1;
③當(dāng)a<0時(shí),g(x)=ax2-2x+1,在(1,+∞)上只有一個(gè)根,且不是重根,
∴g(1)>0,∴a>1,矛盾.
綜上所述,實(shí)數(shù)a的取值值范圍是:0<a<1.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)最值的應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對(duì)數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(2x2+x+1)的定義域是[-1,2],求f(3x-5)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2+n.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=
1
(n+1)an
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2<a≤3且-2≤b≤-1,試求a+b,a-b,ab的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
x+1
x2+8
,求該函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OA
=(2-2cos
x
2
,3sin
x
2
),
OB
=(cos
x
2
,sin
x
2
)x∈R 
(1)求|
AB
|;
(2)求|
AB
|的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={x∈N|x<11},集合A={x|x為不大于6的正偶數(shù)},B={x∈N|x=2n-1,n∈N+,n≤3},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,我國(guó)PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組設(shè)定的最寬限值,即PM2.5日均值在25微克/立方米以下空氣質(zhì)量為一級(jí),在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級(jí),在75微克/立方米以上空氣質(zhì)量為超標(biāo).某市環(huán)保局從市區(qū)2012年全年每天的PM2.5監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取15天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如圖所示莖葉圖(左側(cè)十位為莖,右側(cè)個(gè)位為葉).
(Ⅰ)從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記X表示期中空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求X的分布列;
(Ⅱ)以這15天的PM2.5日均值來(lái)估計(jì)一年的空氣質(zhì)量情況,則一年(按照360天計(jì)算)中大約有多少天的空氣質(zhì)量達(dá)到一級(jí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M(1,
3
),N(
3
,3),若直線l的傾斜角是直線MN傾斜角的一半,則直線l的斜率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案