已知M(1,
3
),N(
3
,3),若直線l的傾斜角是直線MN傾斜角的一半,則直線l的斜率為
 
考點(diǎn):直線的斜率
專題:直線與圓
分析:設(shè)直線AB的傾斜角為α,則直線l的傾斜角為2α,根據(jù)A和B的坐標(biāo)求出直線MN的斜率即求出tan2α>0,然后利用二倍角的正切函數(shù)公式化簡后得到一個關(guān)于tanα的一元二次方程求出方程的解,利用2α的范圍求出α的范圍,即可得到滿足條件的tanα的值.
解答: 解:設(shè)直線l的傾斜角為α,則直線MN的傾斜角為2α,其斜率tan2α=
3-
3
3
-1
=
3
,
2α是銳角,∴α=
π
6

∴tanα=
3
3

故答案為:
3
3
點(diǎn)評:此題要求學(xué)生掌握直線斜率與傾斜角的聯(lián)系,靈活運(yùn)用二倍角的正切函數(shù)公式化簡求值.做題時應(yīng)注意角度的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-2x+2+lnx,a∈R.
(1)當(dāng)a=0時,求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在(1,﹢∞)上只有一個極值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出函數(shù)f(x)=|x2-2x|的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過點(diǎn)P(1,0),且在P點(diǎn)處的切線斜率為2.
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的最值;
(Ⅲ)證明:f(x)≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,8b=5c,∠C=2∠B,求cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在實(shí)數(shù)集R上具有下列性質(zhì):
①直線x=1是函數(shù)f(x)的一條對稱軸;
②f(x+2)=-f(x);
③當(dāng)1≤x1<x2≤3時,(f(x2)-f(x1))•(x2-x1)<0.
則f(2012)、f(2013)從大到小的順序?yàn)?div id="pzvtlpz" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a,b,c表示直線,M表示平面,給出下列四個命題:
①若a∥M,b∥M,則a∥b;   
②若b?M,a∥b,則a∥M;
③若a⊥c,b⊥c,則a∥b;     
④若a⊥M,b⊥M,則a∥b.
其中正確命題的序號是
 
(請將你認(rèn)為正確的結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線xsin
π
6
+ycos
π
6
=2的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個無窮等比數(shù)列的各項(xiàng)和為3,它的各項(xiàng)平方后所組成的無窮等比數(shù)列的各項(xiàng)和為
9
2
,則它的各項(xiàng)立方后所組成的無窮等比數(shù)列的各項(xiàng)和為
 

查看答案和解析>>

同步練習(xí)冊答案