20.已知函數(shù)f(x)=ex-ax(a為常數(shù))的圖象與y軸交于點(diǎn)A,曲線y=f(x)在點(diǎn)A處的切線斜率為-1.
(1)求a的值及函數(shù)f(x)的極值;
(2)設(shè)g(x)=ex-x2,當(dāng)x>0時(shí),g(x)>0恒成立.

分析 (1)利用導(dǎo)數(shù)的幾何意義求得a,再利用導(dǎo)數(shù)法求得函數(shù)的極值;
(2)利用導(dǎo)數(shù)求得函數(shù)的最小值,即可得出結(jié)論.

解答 (1)解:由f(x)=ex-ax得f′(x)=ex-a.
又f′(0)=1-a=-1,∴a=2,
∴f(x)=ex-2x,f′(x)=ex-2.
由f′(x)=0得x=ln2,
當(dāng)x<ln2時(shí),f′(x)<0,f(x)單調(diào)遞減;
當(dāng)x>ln2時(shí),f′(x)>0,f(x)單調(diào)遞增;
∴當(dāng)x=ln2時(shí),f(x)有極小值為f(ln2)=eln2-2ln2=2-ln4.
f(x)無(wú)極大值.
(2)證明:∵g(x)=ex-x2,∴g′(x)=ex-2x,
由(1)得,g′(x)=f(x)≥f(ln2)=eln2-2ln2=2-ln4>0,即g′(x)>0,
∴當(dāng)x>0時(shí),g(x)>g(0)>0,即g(x)>0恒成立.

點(diǎn)評(píng) 該題主要考查導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運(yùn)算及導(dǎo)數(shù)的應(yīng)用等基礎(chǔ)知識(shí),考查學(xué)生的運(yùn)算求解能力、推理論證能力、抽象概括能力,考查函數(shù)與方程思想、有限與無(wú)限思想、化歸與轉(zhuǎn)化思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.方程10sinx=x的根的個(gè)數(shù)是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在下列各命題中,正確命題的是( 。
A.|$\overrightarrow{a}$|=|$\overrightarrow$|,$\overrightarrow{a}$=±$\overrightarrow$B.若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=$\overrightarrow$
C.若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$D.若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$($\overrightarrow$≠0),則$\overrightarrow{a}$∥$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$,且點(diǎn)M和N分別為B1C和DD1的中點(diǎn).
(1)求證:MN∥平面ABCD;
(2)求直線AD1和平面ACB1所成角的正弦值;
(3)求點(diǎn)M到平面ACD1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某公司所生產(chǎn)的一款設(shè)備的維修費(fèi)用y(單位:萬(wàn)元)和使用年限x(單位:年)之間的關(guān)系如表所示,由資料可知y對(duì)x呈線性相關(guān)關(guān)系,
x23456
y2238556570
(Ⅰ)求線性回歸方程;
(Ⅱ)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=ln(x2-3x+2)的單調(diào)減區(qū)間為(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若f(x)=ax3+bx2+cx+d(a>0)為增函數(shù),則(  )
A.b2-4ac>0B.b>0,c>0C.b=0,c>0D.b2-3ac≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知sinα=$\frac{4}{5}$,且α為銳角,則cos$\frac{α}{2}$=( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{3\sqrt{5}}}{5}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.某高校有甲、乙、丙三個(gè)數(shù)學(xué)建模興趣班,甲、乙兩班各有45人,丙班有60人,為了解該校數(shù)學(xué)建模成果,采用分層抽樣從中抽取一個(gè)容量為10的樣本,則在乙班抽取的人數(shù)為(( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案